条件分岐を持つワークフロー
ワークフローは、しばしば何らかの条件に基づいて異なるパスをたどる必要があります。
この例では、ワークフロー内に条件付きフローを作成するために branch
構造をどのように使用するかを示しています。
セットアップ
npm install @ai-sdk/openai @mastra/core
プランニングエージェントの定義
場所と対応する天候条件に基づいて活動を計画するためにLLMコールを活用するプランニングエージェントを定義します。
agents/planning-agent.ts
import { Agent } from "@mastra/core/agent";
import { openai } from "@ai-sdk/openai";
const llm = openai("gpt-4o");
// Define the planning agent that generates activity recommendations
// based on weather conditions and location
const planningAgent = new Agent({
name: "planningAgent",
model: llm,
instructions: `
You are a local activities and travel expert who excels at weather-based planning. Analyze the weather data and provide practical activity recommendations.
📅 [Day, Month Date, Year]
═══════════════════════════
🌡️ WEATHER SUMMARY
• Conditions: [brief description]
• Temperature: [X°C/Y°F to A°C/B°F]
• Precipitation: [X% chance]
🌅 MORNING ACTIVITIES
Outdoor:
• [Activity Name] - [Brief description including specific location/route]
Best timing: [specific time range]
Note: [relevant weather consideration]
🌞 AFTERNOON ACTIVITIES
Outdoor:
• [Activity Name] - [Brief description including specific location/route]
Best timing: [specific time range]
Note: [relevant weather consideration]
🏠 INDOOR ALTERNATIVES
• [Activity Name] - [Brief description including specific venue]
Ideal for: [weather condition that would trigger this alternative]
⚠️ SPECIAL CONSIDERATIONS
• [Any relevant weather warnings, UV index, wind conditions, etc.]
Guidelines:
- Suggest 2-3 time-specific outdoor activities per day
- Include 1-2 indoor backup options
- For precipitation >50%, lead with indoor activities
- All activities must be specific to the location
- Include specific venues, trails, or locations
- Consider activity intensity based on temperature
- Keep descriptions concise but informative
Maintain this exact formatting for consistency, using the emoji and section headers as shown.
`,
});
export { planningAgent };
アクティビティ計画ワークフローの定義
計画ワークフローを3つのステップで定義します:1つはネットワーク呼び出しを介して天気を取得するステップ、1つはアクティビティを計画するステップ、そしてもう1つは屋内アクティビティのみを計画するステップです。 どちらも計画エージェントを使用します。
workflows/conditional-workflow.ts
import { z } from 'zod'
import { createWorkflow, createStep } from "@mastra/core/workflows/vNext";
// Helper function to convert weather codes to human-readable conditions
function getWeatherCondition(code: number): string {
const conditions: Record<number, string> = {
0: "Clear sky",
1: "Mainly clear",
2: "Partly cloudy",
3: "Overcast",
45: "Foggy",
48: "Depositing rime fog",
51: "Light drizzle",
53: "Moderate drizzle",
55: "Dense drizzle",
61: "Slight rain",
63: "Moderate rain",
65: "Heavy rain",
71: "Slight snow fall",
73: "Moderate snow fall",
75: "Heavy snow fall",
95: "Thunderstorm",
};
return conditions[code] || "Unknown";
}
const forecastSchema = z.object({
date: z.string(),
maxTemp: z.number(),
minTemp: z.number(),
precipitationChance: z.number(),
condition: z.string(),
location: z.string(),
});
// Step to fetch weather data for a given city
// Makes API calls to get current weather conditions and forecast
const fetchWeather = createStep({
id: "fetch-weather",
description: "Fetches weather forecast for a given city",
inputSchema: z.object({
city: z.string(),
}),
outputSchema: forecastSchema,
execute: async ({ inputData }) => {
if (!inputData) {
throw new Error("Trigger data not found");
}
const geocodingUrl = `https://geocoding-api.open-meteo.com/v1/search?name=${encodeURIComponent(inputData.city)}&count=1`;
const geocodingResponse = await fetch(geocodingUrl);
const geocodingData = (await geocodingResponse.json()) as {
results: { latitude: number; longitude: number; name: string }[];
};
if (!geocodingData.results?.[0]) {
throw new Error(`Location '${inputData.city}' not found`);
}
const { latitude, longitude, name } = geocodingData.results[0];
const weatherUrl = `https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}¤t=precipitation,weathercode&timezone=auto,&hourly=precipitation_probability,temperature_2m`;
const response = await fetch(weatherUrl);
const data = (await response.json()) as {
current: {
time: string;
precipitation: number;
weathercode: number;
};
hourly: {
precipitation_probability: number[];
temperature_2m: number[];
};
};
const forecast = {
date: new Date().toISOString(),
maxTemp: Math.max(...data.hourly.temperature_2m),
minTemp: Math.min(...data.hourly.temperature_2m),
condition: getWeatherCondition(data.current.weathercode),
location: name,
precipitationChance: data.hourly.precipitation_probability.reduce(
(acc, curr) => Math.max(acc, curr),
0,
),
};
return forecast;
},
});
// Step to plan activities based on weather conditions
// Uses the planning agent to generate activity recommendations
const planActivities = createStep({
id: "plan-activities",
description: "Suggests activities based on weather conditions",
inputSchema: forecastSchema,
outputSchema: z.object({
activities: z.string(),
}),
execute: async ({ inputData, mastra }) => {
const forecast = inputData
if (!forecast) {
throw new Error("Forecast data not found");
}
const prompt = `Based on the following weather forecast for ${forecast.location}, suggest appropriate activities:
${JSON.stringify(forecast, null, 2)}
`;
const agent = mastra?.getAgent("planningAgent");
if (!agent) {
throw new Error("Planning agent not found");
}
const response = await agent.stream([
{
role: "user",
content: prompt,
},
]);
let activitiesText = "";
for await (const chunk of response.textStream) {
process.stdout.write(chunk);
activitiesText += chunk;
}
return {
activities: activitiesText,
};
},
});
// Step to plan indoor activities only
// Used when precipitation chance is high
const planIndoorActivities = createStep({
id: "plan-indoor-activities",
description: "天候状況に基づいて屋内活動を提案します",
inputSchema: forecastSchema,
outputSchema: z.object({
activities: z.string(),
}),
execute: async ({ inputData, mastra }) => {
const forecast = inputData
if (!forecast) {
throw new Error("Forecast data not found");
}
const prompt = `雨が降った場合、${forecast.location}の${forecast.date}における屋内活動を計画してください`;
const agent = mastra?.getAgent("planningAgent");
if (!agent) {
throw new Error("Planning agent not found");
}
const response = await agent.stream([
{
role: "user",
content: prompt,
},
]);
let activitiesText = "";
for await (const chunk of response.textStream) {
process.stdout.write(chunk);
activitiesText += chunk;
}
return {
activities: activitiesText,
};
},
});
// Main workflow that:
// 1. Fetches weather data
// 2. Branches based on precipitation chance:
// - If >50%: Plans indoor activities
// - If <=50%: Plans outdoor activities
const activityPlanningWorkflow = createWorkflow({
id: 'activity-planning-workflow-step2-if-else',
inputSchema: z.object({
city: z.string().describe("天気を取得する都市"),
}),
outputSchema: z.object({
activities: z.string(),
}),
})
.then(fetchWeather)
.branch([
// Branch for high precipitation (indoor activities)
[
async ({ inputData }) => {
return inputData?.precipitationChance > 50;
},
planIndoorActivities,
],
// Branch for low precipitation (outdoor activities)
[
async ({ inputData }) => {
return inputData?.precipitationChance <= 50;
},
planActivities,
],
]);
activityPlanningWorkflow.commit()
export { activityPlanningWorkflow }
Mastraクラスでエージェントとワークフローのインスタンスを登録する
エージェントとワークフローをmastraインスタンスに登録します。 これはワークフロー内でエージェントへのアクセスを可能にするために重要です。
index.ts
import { Mastra } from '@mastra/core/mastra'
import { createLogger } from '@mastra/core/logger'
import { activityPlanningWorkflow } from './workflows/conditional-workflow'
import { planningAgent } from './agents/planning-agent'
// Initialize Mastra with the activity planning workflow
// This enables the workflow to be executed and access the planning agent
const mastra = new Mastra({
vnext_workflows: {
activityPlanningWorkflow,
},
agents: {
planningAgent,
},
logger: createLogger({
name: "Mastra",
level: "info",
}),
})
export { mastra }
アクティビティプランニングワークフローを実行する
ここでは、mastraインスタンスからアクティビティプランニングワークフローを取得し、実行を作成して、必要な入力データで作成した実行を実行します。
exec.ts
import { mastra } from "./";
const workflow = mastra.vnext_getWorkflow('activityPlanningWorkflow')
const run = workflow.createRun()
// Start the workflow with a city
// This will fetch weather and plan activities based on conditions
const result = await run.start({ inputData: { city: 'New York' } })
console.dir(result, { depth: null })