Skip to Content
ワークフローInngestワークフロー

Inngest Workflow

この例では、Mastra を使って Inngest ワークフローを構築する方法を示します。

セットアップ

npm install @mastra/inngest inngest @mastra/core @mastra/deployer @hono/node-server @ai-sdk/openai docker run --rm -p 8288:8288 \ inngest/inngest \ inngest dev -u http://host.docker.internal:3000/inngest/api

または、公式のInngest Dev Serverガイドに従って、ローカル開発にInngest CLIを使用することもできます。

プランニングエージェントの定義

場所と対応する気象条件に基づいてアクティビティを計画するためにLLM呼び出しを活用するプランニングエージェントを定義します。

agents/planning-agent.ts
import { Agent } from "@mastra/core/agent"; import { openai } from "@ai-sdk/openai"; // Create a new planning agent that uses the OpenAI model const planningAgent = new Agent({ name: "planningAgent", model: openai("gpt-4o"), instructions: ` You are a local activities and travel expert who excels at weather-based planning. Analyze the weather data and provide practical activity recommendations. 📅 [Day, Month Date, Year] ═══════════════════════════ 🌡️ WEATHER SUMMARY • Conditions: [brief description] • Temperature: [X°C/Y°F to A°C/B°F] • Precipitation: [X% chance] 🌅 MORNING ACTIVITIES Outdoor: • [Activity Name] - [Brief description including specific location/route] Best timing: [specific time range] Note: [relevant weather consideration] 🌞 AFTERNOON ACTIVITIES Outdoor: • [Activity Name] - [Brief description including specific location/route] Best timing: [specific time range] Note: [relevant weather consideration] 🏠 INDOOR ALTERNATIVES • [Activity Name] - [Brief description including specific venue] Ideal for: [weather condition that would trigger this alternative] ⚠️ SPECIAL CONSIDERATIONS • [Any relevant weather warnings, UV index, wind conditions, etc.] Guidelines: - Suggest 2-3 time-specific outdoor activities per day - Include 1-2 indoor backup options - For precipitation >50%, lead with indoor activities - All activities must be specific to the location - Include specific venues, trails, or locations - Consider activity intensity based on temperature - Keep descriptions concise but informative Maintain this exact formatting for consistency, using the emoji and section headers as shown. `, }); export { planningAgent };

Activity Planner Workflowの定義

3つのステップでactivity planner workflowを定義します:ネットワーク呼び出しで天気を取得するステップ、アクティビティを計画するステップ、そして屋内アクティビティのみを計画するステップです。

workflows/inngest-workflow.ts
import { init } from "@mastra/inngest"; import { Inngest } from "inngest"; import { z } from "zod"; const { createWorkflow, createStep } = init( new Inngest({ id: "mastra", baseUrl: `http://localhost:8288`, }), ); // Helper function to convert weather codes to human-readable descriptions function getWeatherCondition(code: number): string { const conditions: Record<number, string> = { 0: "Clear sky", 1: "Mainly clear", 2: "Partly cloudy", 3: "Overcast", 45: "Foggy", 48: "Depositing rime fog", 51: "Light drizzle", 53: "Moderate drizzle", 55: "Dense drizzle", 61: "Slight rain", 63: "Moderate rain", 65: "Heavy rain", 71: "Slight snow fall", 73: "Moderate snow fall", 75: "Heavy snow fall", 95: "Thunderstorm", }; return conditions[code] || "Unknown"; } const forecastSchema = z.object({ date: z.string(), maxTemp: z.number(), minTemp: z.number(), precipitationChance: z.number(), condition: z.string(), location: z.string(), });

ステップ1:指定された都市の天気データを取得

workflows/inngest-workflow.ts
const fetchWeather = createStep({ id: "fetch-weather", description: "Fetches weather forecast for a given city", inputSchema: z.object({ city: z.string(), }), outputSchema: forecastSchema, execute: async ({ inputData }) => { if (!inputData) { throw new Error("Trigger data not found"); } // Get latitude and longitude for the city const geocodingUrl = `https://geocoding-api.open-meteo.com/v1/search?name=${encodeURIComponent(inputData.city)}&count=1`; const geocodingResponse = await fetch(geocodingUrl); const geocodingData = (await geocodingResponse.json()) as { results: { latitude: number; longitude: number; name: string }[]; }; if (!geocodingData.results?.[0]) { throw new Error(`Location '${inputData.city}' not found`); } const { latitude, longitude, name } = geocodingData.results[0]; // Fetch weather data using the coordinates const weatherUrl = `https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}&current=precipitation,weathercode&timezone=auto,&hourly=precipitation_probability,temperature_2m`; const response = await fetch(weatherUrl); const data = (await response.json()) as { current: { time: string; precipitation: number; weathercode: number; }; hourly: { precipitation_probability: number[]; temperature_2m: number[]; }; }; const forecast = { date: new Date().toISOString(), maxTemp: Math.max(...data.hourly.temperature_2m), minTemp: Math.min(...data.hourly.temperature_2m), condition: getWeatherCondition(data.current.weathercode), location: name, precipitationChance: data.hourly.precipitation_probability.reduce( (acc, curr) => Math.max(acc, curr), 0, ), }; return forecast; }, });

ステップ2:天気に基づいてアクティビティ(屋内または屋外)を提案

workflows/inngest-workflow.ts
const planActivities = createStep({ id: "plan-activities", description: "Suggests activities based on weather conditions", inputSchema: forecastSchema, outputSchema: z.object({ activities: z.string(), }), execute: async ({ inputData, mastra }) => { const forecast = inputData; if (!forecast) { throw new Error("Forecast data not found"); } const prompt = `Based on the following weather forecast for ${forecast.location}, suggest appropriate activities: ${JSON.stringify(forecast, null, 2)} `; const agent = mastra?.getAgent("planningAgent"); if (!agent) { throw new Error("Planning agent not found"); } const response = await agent.stream([ { role: "user", content: prompt, }, ]); let activitiesText = ""; for await (const chunk of response.textStream) { process.stdout.write(chunk); activitiesText += chunk; } return { activities: activitiesText, }; }, });

ステップ 3: 屋内アクティビティのみを提案する(雨天の場合)

workflows/inngest-workflow.ts
const planIndoorActivities = createStep({ id: "plan-indoor-activities", description: "Suggests indoor activities based on weather conditions", inputSchema: forecastSchema, outputSchema: z.object({ activities: z.string(), }), execute: async ({ inputData, mastra }) => { const forecast = inputData; if (!forecast) { throw new Error("Forecast data not found"); } const prompt = `In case it rains, plan indoor activities for ${forecast.location} on ${forecast.date}`; const agent = mastra?.getAgent("planningAgent"); if (!agent) { throw new Error("Planning agent not found"); } const response = await agent.stream([ { role: "user", content: prompt, }, ]); let activitiesText = ""; for await (const chunk of response.textStream) { process.stdout.write(chunk); activitiesText += chunk; } return { activities: activitiesText, }; }, });

アクティビティプランナーのワークフローを定義する

workflows/inngest-workflow.ts
const activityPlanningWorkflow = createWorkflow({ id: "activity-planning-workflow-step2-if-else", inputSchema: z.object({ city: z.string().describe("The city to get the weather for"), }), outputSchema: z.object({ activities: z.string(), }), }) .then(fetchWeather) .branch([ [ // If precipitation chance is greater than 50%, suggest indoor activities async ({ inputData }) => { return inputData?.precipitationChance > 50; }, planIndoorActivities, ], [ // Otherwise, suggest a mix of activities async ({ inputData }) => { return inputData?.precipitationChance <= 50; }, planActivities, ], ]); activityPlanningWorkflow.commit(); export { activityPlanningWorkflow };

MastraクラスでAgentとWorkflowインスタンスを登録する

エージェントとワークフローをmastraインスタンスに登録します。これにより、ワークフロー内でエージェントにアクセスできるようになります。

index.ts
import { Mastra } from "@mastra/core/mastra"; import { serve as inngestServe } from "@mastra/inngest"; import { PinoLogger } from "@mastra/loggers"; import { Inngest } from "inngest"; import { activityPlanningWorkflow } from "./workflows/inngest-workflow"; import { planningAgent } from "./agents/planning-agent"; import { realtimeMiddleware } from "@inngest/realtime"; // Create an Inngest instance for workflow orchestration and event handling const inngest = new Inngest({ id: "mastra", baseUrl: `http://localhost:8288`, // URL of your local Inngest server isDev: true, middleware: [realtimeMiddleware()], // Enable real-time updates in the Inngest dashboard }); // Create and configure the main Mastra instance export const mastra = new Mastra({ workflows: { activityPlanningWorkflow, }, agents: { planningAgent, }, server: { host: "0.0.0.0", apiRoutes: [ { path: "/api/inngest", // API endpoint for Inngest to send events to method: "ALL", createHandler: async ({ mastra }) => inngestServe({ mastra, inngest }), }, ], }, logger: new PinoLogger({ name: "Mastra", level: "info", }), });

アクティビティプランナーワークフローの実行

ここでは、mastra インスタンスからアクティビティプランナーワークフローを取得し、実行を作成して、必要な inputData を使って作成した実行を実行します。

exec.ts
import { mastra } from "./"; import { serve } from "@hono/node-server"; import { createHonoServer } from "@mastra/deployer/server"; const app = await createHonoServer(mastra); // Start the server on port 3000 so Inngest can send events to it const srv = serve({ fetch: app.fetch, port: 3000, }); const workflow = mastra.getWorkflow("activityPlanningWorkflow"); const run = workflow.createRun({}); // Start the workflow with the required input data (city name) // This will trigger the workflow steps and stream the result to the console const result = await run.start({ inputData: { city: "New York" } }); console.dir(result, { depth: null }); // Close the server after the workflow run is complete srv.close();

ワークフローを実行した後、http://localhost:8288 の Inngest ダッシュボードで、ワークフローの実行状況をリアルタイムで確認・監視できます。