DocsWorkflowsControl Flow

Control Flow in Workflows: Branching, Merging, and Conditions

When you create a multi-step process, you may need to run steps in parallel, chain them sequentially, or follow different paths based on outcomes. This page describes how you can manage branching, merging, and conditions to construct workflows that meet your logic requirements. The code snippets show the key patterns for structuring complex control flow.

Parallel Execution

You can run multiple steps at the same time if they don’t depend on each other. This approach can speed up your workflow when steps perform independent tasks. The code below shows how to add two steps in parallel:

myWorkflow.step(fetchUserData).step(fetchOrderData);

See the Parallel Steps example for more details.

Sequential Execution

Sometimes you need to run steps in strict order to ensure outputs from one step become inputs for the next. Use .then() to link dependent operations. The code below shows how to chain steps sequentially:

myWorkflow.step(fetchOrderData).then(validateData).then(processOrder);

See the Sequential Steps example for more details.

Branching and Merging Paths

When different outcomes require different paths, branching is helpful. You can also merge paths later once they complete. The code below shows how to branch after stepA and later converge on stepF:

myWorkflow
  .step(stepA)
    .then(stepB)
    .then(stepD)
  .after(stepA)
    .step(stepC)
    .then(stepE)
  .after([stepD, stepE])
    .step(stepF);

In this example:

  • stepA leads to stepB, then to stepD.
  • Separately, stepA also triggers stepC, which in turn leads to stepE.
  • Separately, stepD also triggers stepF and stepE in parallel.

See the Branching Paths example for more details.

Merging Multiple Branches

Sometimes you need a step to execute only after multiple other steps have completed. Mastra provides a compound .after([]) syntax that allows you to specify multiple dependencies for a step.

myWorkflow
  .step(fetchUserData)
  .then(validateUserData)
  .step(fetchProductData)
  .then(validateProductData)
  // This step will only run after BOTH validateUserData AND validateProductData have completed
  .after([validateUserData, validateProductData])
  .step(processOrder)

In this example:

  • fetchUserData and fetchProductData run in parallel branches
  • Each branch has its own validation step
  • The processOrder step only executes after both validation steps have completed successfully

This pattern is particularly useful for:

  • Joining parallel execution paths
  • Implementing synchronization points in your workflow
  • Ensuring all required data is available before proceeding

You can also create complex dependency patterns by combining multiple .after([]) calls:

myWorkflow
  // First branch
  .step(stepA)
  .then(stepB)
  .then(stepC)
 
  // Second branch
  .step(stepD)
  .then(stepE)
 
  // Third branch
  .step(stepF)
  .then(stepG)
 
  // This step depends on the completion of multiple branches
  .after([stepC, stepE, stepG])
  .step(finalStep)

Cyclical Dependencies and Loops

Workflows often need to repeat steps until certain conditions are met. Mastra provides two powerful methods for creating loops: until and while. These methods offer an intuitive way to implement repetitive tasks.

Using Manual Cyclical Dependencies (Legacy Approach)

In earlier versions, you could create loops by manually defining cyclical dependencies with conditions:

myWorkflow
  .step(fetchData)
  .then(processData)
  .after(processData)
  .step(finalizeData, {
    when: { "processData.status": "success" },
  })
  .step(fetchData, {
    when: { "processData.status": "retry" },
  });

While this approach still works, the newer until and while methods provide a cleaner and more maintainable way to create loops.

Using until for Condition-Based Loops

The until method repeats a step until a specified condition becomes true. It takes two arguments:

  1. A condition that determines when to stop looping
  2. The step to repeat
workflow
  .step(incrementStep)
  .until(async ({ context }) => {
    // Stop when the value reaches or exceeds 10
    const result = context.getStepResult(incrementStep);
    return (result?.value ?? 0) >= 10;
  }, incrementStep)
  .then(finalStep);

You can also use a reference-based condition:

workflow
  .step(incrementStep)
  .until(
    {
      ref: { step: incrementStep, path: 'value' },
      query: { $gte: 10 },
    },
    incrementStep
  )
  .then(finalStep);

Using while for Condition-Based Loops

The while method repeats a step as long as a specified condition remains true. It takes the same arguments as until:

  1. A condition that determines when to continue looping
  2. The step to repeat
workflow
  .step(incrementStep)
  .while(async ({ context }) => {
    // Continue as long as the value is less than 10
    const result = context.getStepResult(incrementStep);
    return (result?.value ?? 0) < 10;
  }, incrementStep)
  .then(finalStep);

You can also use a reference-based condition:

workflow
  .step(incrementStep)
  .while(
    {
      ref: { step: incrementStep, path: 'value' },
      query: { $lt: 10 },
    },
    incrementStep
  )
  .then(finalStep);

Comparison Operators for Reference Conditions

When using reference-based conditions, you can use these comparison operators:

OperatorDescription
$eqEqual to
$neNot equal to
$gtGreater than
$gteGreater than or equal to
$ltLess than
$lteLess than or equal to

See the Loop Control example for more details.

Conditions

Use the when property to control whether a step runs based on data from previous steps. Below are three ways to specify conditions.

Option 1: Function

myWorkflow.step(
  new Step({
    id: "processData",
    execute: async ({ context }) => {
      // Action logic
    },
  }),
  {
    when: async ({ context }) => {
      const fetchData = context?.getStepResult<{ status: string }>("fetchData");
      return fetchData?.status === "success";
    },
  },
);

Option 2: Query Object

myWorkflow.step(
  new Step({
    id: "processData",
    execute: async ({ context }) => {
      // Action logic
    },
  }),
  {
    when: {
      ref: {
        step: {
          id: "fetchData",
        },
        path: "status",
      },
      query: { $eq: "success" },
    },
  },
);

Option 3: Simple Path Comparison

myWorkflow.step(
  new Step({
    id: "processData",
    execute: async ({ context }) => {
      // Action logic
    },
  }),
  {
    when: {
      "fetchData.status": "success",
    },
  },
);

Data Access Patterns

Mastra provides several ways to pass data between steps:

  1. Context Object - Access step results directly through the context object
  2. Variable Mapping - Explicitly map outputs from one step to inputs of another
  3. getStepResult Method - Type-safe method to retrieve step outputs

Each approach has its advantages depending on your use case and requirements for type safety.

Using getStepResult Method

The getStepResult method provides a type-safe way to access step results. This is the recommended approach when working with TypeScript as it preserves type information.

Basic Usage

For better type safety, you can provide a type parameter to getStepResult:

src/mastra/workflows/get-step-result.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
const fetchUserStep = new Step({
  id: 'fetchUser',
  outputSchema: z.object({
    name: z.string(),
    userId: z.string(),
  }),
  execute: async ({ context }) => {
    return { name: 'John Doe', userId: '123' };
  },
});
 
const analyzeDataStep = new Step({
  id: "analyzeData",
  execute: async ({ context }) => {
    // Type-safe access to previous step result
    const userData = context.getStepResult<{ name: string, userId: string }>("fetchUser");
 
    if (!userData) {
      return { status: "error", message: "User data not found" };
    }
 
    return {
      analysis: `Analyzed data for user ${userData.name}`,
      userId: userData.userId
    };
  },
});

Using Step References

The most type-safe approach is to reference the step directly in the getStepResult call:

src/mastra/workflows/step-reference.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
// Define step with output schema
const fetchUserStep = new Step({
  id: "fetchUser",
  outputSchema: z.object({
    userId: z.string(),
    name: z.string(),
    email: z.string(),
  }),
  execute: async () => {
    return {
      userId: "user123",
      name: "John Doe",
      email: "john@example.com"
    };
  },
});
 
const processUserStep = new Step({
  id: "processUser",
  execute: async ({ context }) => {
    // TypeScript will infer the correct type from fetchUserStep's outputSchema
    const userData = context.getStepResult(fetchUserStep);
 
    return {
      processed: true,
      userName: userData?.name
    };
  },
});
 
const workflow = new Workflow({
  name: "user-workflow",
});
 
workflow
  .step(fetchUserStep)
  .then(processUserStep)
  .commit();

Using Variable Mapping

Variable mapping is an explicit way to define data flow between steps. This approach makes dependencies clear and provides good type safety. The data injected into the step is available in the context.inputData object, and typed based on the inputSchema of the step.

src/mastra/workflows/variable-mapping.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
const fetchUserStep = new Step({
  id: "fetchUser",
  outputSchema: z.object({
    userId: z.string(),
    name: z.string(),
    email: z.string(),
  }),
  execute: async () => {
    return {
      userId: "user123",
      name: "John Doe",
      email: "john@example.com"
    };
  },
});
 
const sendEmailStep = new Step({
  id: "sendEmail",
  inputSchema: z.object({
    recipientEmail: z.string(),
    recipientName: z.string(),
  }),
  execute: async ({ context }) => {
    const { recipientEmail, recipientName } = context.inputData;
 
    // Send email logic here
    return {
      status: "sent",
      to: recipientEmail
    };
  },
});
 
const workflow = new Workflow({
  name: "email-workflow",
});
 
workflow
  .step(fetchUserStep)
  .then(sendEmailStep, {
    variables: {
      // Map specific fields from fetchUser to sendEmail inputs
      recipientEmail: { step: fetchUserStep, path: 'email' },
      recipientName: { step: fetchUserStep, path: 'name' }
    }
  })
  .commit();

For more details on variable mapping, see the Data Mapping with Workflow Variables documentation.

Using the Context Object

The context object provides direct access to all step results and their outputs. This approach is more flexible but requires careful handling to maintain type safety. You can access step results directly through the context.steps object:

src/mastra/workflows/context-access.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
const processOrderStep = new Step({
  id: 'processOrder',
  execute: async ({ context }) => {
    // Access data from a previous step
    let userData: { name: string, userId: string };
    if (context.steps['fetchUser']?.status === 'success') {
      userData = context.steps.fetchUser.output;
    } else {
      throw new Error('User data not found');
    }
 
    return {
      orderId: 'order123',
      userId: userData.userId,
      status: 'processing',
    };
  },
});
 
const workflow = new Workflow({
  name: "order-workflow",
});
 
workflow
  .step(fetchUserStep)
  .then(processOrderStep)
  .commit();

Workflow-Level Type Safety

For comprehensive type safety across your entire workflow, you can define types for all steps and pass them to the Workflow This allows you to get type safety for the context object on conditions, and on step results in the final workflow output.

src/mastra/workflows/workflow-typing.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
 
// Create steps with typed outputs
const fetchUserStep = new Step({
  id: "fetchUser",
  outputSchema: z.object({
    userId: z.string(),
    name: z.string(),
    email: z.string(),
  }),
  execute: async () => {
    return {
      userId: "user123",
      name: "John Doe",
      email: "john@example.com"
    };
  },
});
 
const processOrderStep = new Step({
  id: "processOrder",
  execute: async ({ context }) => {
    // TypeScript knows the shape of userData
    const userData = context.getStepResult(fetchUserStep);
 
    return {
      orderId: "order123",
      status: "processing"
    };
  },
});
 
const workflow = new Workflow<[typeof fetchUserStep, typeof processOrderStep]>({
  name: "typed-workflow",
});
 
workflow
  .step(fetchUserStep)
  .then(processOrderStep)
  .until(async ({ context }) => {
    // TypeScript knows the shape of userData here
    const res = context.getStepResult('fetchUser');
    return res?.userId === '123';
  }, processOrderStep)
  .commit();

Accessing Trigger Data

In addition to step results, you can access the original trigger data that started the workflow:

src/mastra/workflows/trigger-data.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
// Define trigger schema
const triggerSchema = z.object({
  customerId: z.string(),
  orderItems: z.array(z.string()),
});
 
type TriggerType = z.infer<typeof triggerSchema>;
 
const processOrderStep = new Step({
  id: "processOrder",
  execute: async ({ context }) => {
    // Access trigger data with type safety
    const triggerData = context.getStepResult<TriggerType>('trigger');
 
    return {
      customerId: triggerData?.customerId,
      itemCount: triggerData?.orderItems.length || 0,
      status: "processing"
    };
  },
});
 
const workflow = new Workflow({
  name: "order-workflow",
  triggerSchema,
});
 
workflow
  .step(processOrderStep)
  .commit();

Accessing Resume Data

The data injected into the step is available in the context.inputData object, and typed based on the inputSchema of the step.

src/mastra/workflows/resume-data.ts
import { Step, Workflow } from "@mastra/core/workflows";
import { z } from "zod";
 
const processOrderStep = new Step({
  id: "processOrder",
  inputSchema: z.object({
    orderId: z.string(),
  }),
  execute: async ({ context, suspend }) => {
    const { orderId } = context.inputData;
 
    if (!orderId) {
      await suspend();
      return;
    }
 
    return {
      orderId,
      status: "processed"
    };
  },
});
 
const workflow = new Workflow({
  name: "order-workflow",
});
 
workflow
  .step(processOrderStep)
  .commit();
 
const run = workflow.createRun();
const result = await run.start();
 
const resumedResult = await workflow.resume({
  runId: result.runId,
  stepId: 'processOrder',
  inputData: {
    orderId: '123',
  },
});
 
console.log({resumedResult});

Accessing Workflow Results

You can get typed access to the results of a workflow by injecting the step types into the Workflow type params:

src/mastra/workflows/get-results.ts
import { Workflow } from "@mastra/core/workflows";
 
const fetchUserStep = new Step({
  id: "fetchUser",
  outputSchema: z.object({
    userId: z.string(),
    name: z.string(),
    email: z.string(),
  }),
  execute: async () => {
    return {
      userId: "user123",
      name: "John Doe",
      email: "john@example.com"
    };
  },
});
 
const processOrderStep = new Step({
  id: "processOrder",
  outputSchema: z.object({
    orderId: z.string(),
    status: z.string(),
  }),
  execute: async ({ context }) => {
    const userData = context.getStepResult(fetchUserStep);
    return {
      orderId: "order123",
      status: "processing"
    };
  },
});
 
const workflow = new Workflow<[typeof fetchUserStep, typeof processOrderStep]>({
  name: "typed-workflow",
});
 
workflow
  .step(fetchUserStep)
  .then(processOrderStep)
  .commit();
 
const run = workflow.createRun();
const result = await run.start();
 
// The result is a discriminated union of the step results
// So it needs to be narrowed down via status checks
if (result.results.processOrder.status === 'success') {
  // TypeScript will know the shape of the results
  const orderId = result.results.processOrder.output.orderId;
  console.log({orderId});
}
 
if (result.results.fetchUser.status === 'success') {
  const userId = result.results.fetchUser.output.userId;
  console.log({userId});
}

Best Practices for Data Flow

  1. Use getStepResult with Step References for Type Safety

    • Ensures TypeScript can infer the correct types
    • Catches type errors at compile time
  2. *Use Variable Mapping for Explicit Dependencies

    • Makes data flow clear and maintainable
    • Provides good documentation of step dependencies
  3. Define Output Schemas for Steps

    • Validates data at runtime
      • Validates return type of the execute function
    • Improves type inference in TypeScript
  4. Handle Missing Data Gracefully

    • Always check if step results exist before accessing properties
    • Provide fallback values for optional data
  5. Keep Data Transformations Simple

    • Transform data in dedicated steps rather than in variable mappings
    • Makes workflows easier to test and debug

Comparison of Data Flow Methods

MethodType SafetyExplicitnessUse Case
getStepResultHighestHighComplex workflows with strict typing requirements
Variable MappingHighHighWhen dependencies need to be clear and explicit
context.stepsMediumLowQuick access to step data in simple workflows

By choosing the right data flow method for your use case, you can create workflows that are both type-safe and maintainable.