ExamplesWorkflowsSuspend and Resume

Workflow with Suspend and Resume

Workflow steps can be suspended and resumed at any point in the workflow execution. This example demonstrates how to suspend a workflow step and resume it later.

Basic Example

import { Mastra } from '@mastra/core';
import { Step, Workflow } from '@mastra/core/workflows';
import { z } from 'zod';
 
const stepOne = new Step({
  id: 'stepOne',
  outputSchema: z.object({
    doubledValue: z.number(),
  }),
  execute: async ({ context }) => {
    const doubledValue = context.triggerData.inputValue * 2;
    return { doubledValue };
  },
});
 
const stepTwo = new Step({
  id: 'stepTwo',
  outputSchema: z.object({
    incrementedValue: z.number(),
  }),
  execute: async ({ context, suspend }) => {
 
    const secondValue = context.inputData?.secondValue ?? 0;
    const doubledValue = context.getStepResult(stepOne)?.doubledValue ?? 0;
 
    const incrementedValue = doubledValue + secondValue;
 
    if (incrementedValue < 100) {
      await suspend();
      return { incrementedValue: 0 };
    }
    return { incrementedValue };
  },
});
 
// Build the workflow
const myWorkflow = new Workflow({
  name: 'my-workflow',
  triggerSchema: z.object({
    inputValue: z.number(),
  }),
});
 
// run workflows in parallel
myWorkflow
  .step(stepOne)
  .then(stepTwo)
  .commit();
 
// Register the workflow
export const mastra = new Mastra({
  workflows: { registeredWorkflow: myWorkflow },
})
 
// Get registered workflow from Mastra
const registeredWorkflow = mastra.getWorkflow('registeredWorkflow');
const { runId, start } = registeredWorkflow.createRun();
 
// Start watching the workflow before executing it
myWorkflow.watch(async ({ context, activePaths }) => {
  for (const _path of activePaths) {
    const stepTwoStatus = context.steps?.stepTwo?.status;
    if (stepTwoStatus === 'suspended') {
      console.log("Workflow suspended, resuming with new value");
 
      // Resume the workflow with new context
      await myWorkflow.resume({
        runId,
        stepId: 'stepTwo',
        context: { secondValue: 100 },
      });
    }
  }
})
 
// Start the workflow execution
await start({ triggerData: { inputValue: 45 } });

Advanced Example with Multiple Suspension Points Using async/await pattern and suspend payloads

This example demonstrates a more complex workflow with multiple suspension points using the async/await pattern. It simulates a content generation workflow that requires human intervention at different stages.

import { Mastra } from '@mastra/core';
import { Step, Workflow } from '@mastra/core/workflows';
import { z } from 'zod';
 
// Step 1: Get user input
const getUserInput = new Step({
  id: 'getUserInput',
  execute: async ({ context }) => {
    // In a real application, this might come from a form or API
    return { userInput: context.triggerData.input };
  },
  outputSchema: z.object({ userInput: z.string() }),
});
 
// Step 2: Generate content with AI (may suspend for human guidance)
const promptAgent = new Step({
  id: 'promptAgent',
  inputSchema: z.object({
    guidance: z.string(),
  }),
  execute: async ({ context, suspend }) => {
    const userInput = context.getStepResult(getUserInput)?.userInput;
    console.log(`Generating content based on: ${userInput}`);
 
    const guidance = context.inputData?.guidance;
 
    // Simulate AI generating content
    const initialDraft = generateInitialDraft(userInput);
 
    // If confidence is high, return the generated content directly
    if (initialDraft.confidenceScore > 0.7) {
      return { modelOutput: initialDraft.content };
    }
 
    console.log('Low confidence in generated content, suspending for human guidance', {guidance});
 
    // If confidence is low, suspend for human guidance
    if (!guidance) {
      // only suspend if no guidance is provided
      await suspend();
      return undefined;
    }
 
    // This code runs after resume with human guidance
    console.log('Resumed with human guidance');
 
    // Use the human guidance to improve the output
    return {
      modelOutput: enhanceWithGuidance(initialDraft.content, guidance),
    };
  },
  outputSchema: z.object({ modelOutput: z.string() }).optional(),
});
 
// Step 3: Evaluate the content quality
const evaluateTone = new Step({
  id: 'evaluateToneConsistency',
  execute: async ({ context }) => {
    const content = context.getStepResult(promptAgent)?.modelOutput;
 
    // Simulate evaluation
    return {
      toneScore: { score: calculateToneScore(content) },
      completenessScore: { score: calculateCompletenessScore(content) },
    };
  },
  outputSchema: z.object({
    toneScore: z.any(),
    completenessScore: z.any(),
  }),
});
 
// Step 4: Improve response if needed (may suspend)
const improveResponse = new Step({
  id: 'improveResponse',
  inputSchema: z.object({
    improvedContent: z.string(),
    resumeAttempts: z.number(),
  }),
  execute: async ({ context, suspend }) => {
    const content = context.getStepResult(promptAgent)?.modelOutput;
    const toneScore =
      context.getStepResult(evaluateTone)?.toneScore.score ?? 0;
    const completenessScore =
      context.getStepResult(evaluateTone)?.completenessScore.score ?? 0;
 
    const improvedContent = context.inputData.improvedContent;
    const resumeAttempts = context.inputData.resumeAttempts ?? 0;
 
    // If scores are above threshold, make minor improvements
    if (toneScore > 0.8 && completenessScore > 0.8) {
      return { improvedOutput: makeMinorImprovements(content) };
    }
 
    console.log('Content quality below threshold, suspending for human intervention', {improvedContent, resumeAttempts});
 
    if (!improvedContent) {
      // Suspend with payload containing content and resume attempts
      await suspend({
        content,
        scores: { tone: toneScore, completeness: completenessScore },
        needsImprovement: toneScore < 0.8 ? 'tone' : 'completeness',
        resumeAttempts: resumeAttempts + 1,
      });
      return { improvedOutput: content ?? '' };
    }
 
    console.log('Resumed with human improvements', improvedContent);
    return { improvedOutput: improvedContent ?? content ?? '' };
  },
  outputSchema: z.object({ improvedOutput: z.string() }).optional(),
});
 
// Step 5: Final evaluation
const evaluateImproved = new Step({
  id: 'evaluateImprovedResponse',
  execute: async ({ context }) => {
    const improvedContent = context.getStepResult(improveResponse)?.improvedOutput;
 
    // Simulate final evaluation
    return {
      toneScore: { score: calculateToneScore(improvedContent) },
      completenessScore: { score: calculateCompletenessScore(improvedContent) },
    };
  },
  outputSchema: z.object({
    toneScore: z.any(),
    completenessScore: z.any(),
  }),
});
 
// Build the workflow
const contentWorkflow = new Workflow({
  name: 'content-generation-workflow',
  triggerSchema: z.object({ input: z.string() }),
});
 
contentWorkflow
  .step(getUserInput)
  .then(promptAgent)
  .then(evaluateTone)
  .then(improveResponse)
  .then(evaluateImproved)
  .commit();
 
// Register the workflow
const mastra = new Mastra({
  workflows: { contentWorkflow },
});
 
// Helper functions (simulated)
function generateInitialDraft(input: string = '') {
  // Simulate AI generating content
  return {
    content: `Generated content based on: ${input}`,
    confidenceScore: 0.6, // Simulate low confidence to trigger suspension
  };
}
 
function enhanceWithGuidance(content: string = '', guidance: string = '') {
  return `${content} (Enhanced with guidance: ${guidance})`;
}
 
function makeMinorImprovements(content: string = '') {
  return `${content} (with minor improvements)`;
}
 
function calculateToneScore(_: string = '') {
  return 0.7; // Simulate a score that will trigger suspension
}
 
function calculateCompletenessScore(_: string = '') {
  return 0.9;
}
 
// Usage example
async function runWorkflow() {
  const workflow = mastra.getWorkflow('contentWorkflow');
  const { runId, start } = workflow.createRun();
 
  let finalResult: any;
 
  // Start the workflow
  const initialResult = await start({
    triggerData: { input: 'Create content about sustainable energy' },
  });
 
  console.log('Initial workflow state:', initialResult.results);
 
  const promptAgentStepResult = initialResult.activePaths.get('promptAgent');
 
  // Check if promptAgent step is suspended
  if (promptAgentStepResult?.status === 'suspended') {
    console.log('Workflow suspended at promptAgent step');
    console.log('Suspension payload:', promptAgentStepResult?.suspendPayload);
 
    // Resume with human guidance
    const resumeResult1 = await workflow.resume({
      runId,
      stepId: 'promptAgent',
      context: {
        guidance: 'Focus more on solar and wind energy technologies',
      },
    });
 
    console.log('Workflow resumed and continued to next steps');
 
    let improveResponseResumeAttempts = 0;
    let improveResponseStatus = resumeResult1?.activePaths.get('improveResponse')?.status;
 
    // Check if improveResponse step is suspended
    while (improveResponseStatus === 'suspended') {
      console.log('Workflow suspended at improveResponse step');
      console.log('Suspension payload:', resumeResult1?.activePaths.get('improveResponse')?.suspendPayload);
 
      const improvedContent =
        improveResponseResumeAttempts < 3
          ? undefined
          : 'Completely revised content about sustainable energy focusing on solar and wind technologies';
 
      // Resume with human improvements
      finalResult = await workflow.resume({
        runId,
        stepId: 'improveResponse',
        context: {
          improvedContent,
          resumeAttempts: improveResponseResumeAttempts,
        },
      });
 
      improveResponseResumeAttempts =
        finalResult?.activePaths.get('improveResponse')?.suspendPayload?.resumeAttempts ?? 0;
      improveResponseStatus = finalResult?.activePaths.get('improveResponse')?.status;
 
      console.log('Improved response result:', finalResult?.results);
    }
  }
  return finalResult;
}
 
// Run the workflow
const result = await runWorkflow();
console.log('Workflow completed');
console.log('Final workflow result:', result);





View Example on GitHub