Skip to main content
Mastra v1 is coming in January 2026. Get ahead by starting new projects with the beta or upgrade your existing project today.

Turbopuffer Vector Store

The TurbopufferVector class provides vector search using Turbopuffer, a high-performance vector database optimized for RAG applications. Turbopuffer offers fast vector similarity search with advanced filtering capabilities and efficient storage management.

Constructor OptionsDirect link to Constructor Options

apiKey:

string
The API key to authenticate with Turbopuffer

baseUrl?:

string
= https://api.turbopuffer.com
The base URL for the Turbopuffer API

connectTimeout?:

number
= 10000
The timeout to establish a connection, in ms. Only applicable in Node and Deno.

connectionIdleTimeout?:

number
= 60000
The socket idle timeout, in ms. Only applicable in Node and Deno.

warmConnections?:

number
= 0
The number of connections to open initially when creating a new client.

compression?:

boolean
= true
Whether to compress requests and accept compressed responses.

schemaConfigForIndex?:

function
A callback function that takes an index name and returns a config object for that index. This allows you to define explicit schemas per index.

MethodsDirect link to Methods

createIndex()Direct link to createIndex()

indexName:

string
Name of the index to create

dimension:

number
Vector dimension (must match your embedding model)

metric?:

'cosine' | 'euclidean' | 'dotproduct'
= cosine
Distance metric for similarity search

upsert()Direct link to upsert()

vectors:

number[][]
Array of embedding vectors

metadata?:

Record<string, any>[]
Metadata for each vector

ids?:

string[]
Optional vector IDs (auto-generated if not provided)

query()Direct link to query()

indexName:

string
Name of the index to query

queryVector:

number[]
Query vector to find similar vectors

topK?:

number
= 10
Number of results to return

filter?:

Record<string, any>
Metadata filters for the query

includeVector?:

boolean
= false
Whether to include vectors in the results

listIndexes()Direct link to listIndexes()

Returns an array of index names as strings.

describeIndex()Direct link to describeIndex()

indexName:

string
Name of the index to describe

Returns:

interface IndexStats {
dimension: number;
count: number;
metric: "cosine" | "euclidean" | "dotproduct";
}

deleteIndex()Direct link to deleteIndex()

indexName:

string
Name of the index to delete

Response TypesDirect link to Response Types

Query results are returned in this format:

interface QueryResult {
id: string;
score: number;
metadata: Record<string, any>;
vector?: number[]; // Only included if includeVector is true
}

Schema ConfigurationDirect link to Schema Configuration

The schemaConfigForIndex option allows you to define explicit schemas for different indexes:

schemaConfigForIndex: (indexName: string) => {
// Mastra's default embedding model and index for memory messages:
if (indexName === "memory_messages_384") {
return {
dimensions: 384,
schema: {
thread_id: {
type: "string",
filterable: true,
},
},
};
} else {
throw new Error(`TODO: add schema for index: ${indexName}`);
}
};

Error HandlingDirect link to Error Handling

The store throws typed errors that can be caught:

try {
await store.query({
indexName: "index_name",
queryVector: queryVector,
});
} catch (error) {
if (error instanceof VectorStoreError) {
console.log(error.code); // 'connection_failed' | 'invalid_dimension' | etc
console.log(error.details); // Additional error context
}
}