Insert Embedding in Pinecone
After generating embeddings, you need to store them in a vector database for similarity search. The PineconeVector
class provides methods to create indexes and insert embeddings into Pinecone, a managed vector database service. This example shows how to store embeddings in Pinecone for later retrieval.
import { openai } from '@ai-sdk/openai';
import { PineconeVector } from '@mastra/pinecone';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const pinecone = new PineconeVector(process.env.PINECONE_API_KEY!);
await pinecone.createIndex({
indexName: 'testindex',
dimension: 1536,
});
await pinecone.upsert({
indexName: 'testindex',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
View Example on GitHub