Upsert Embeddings
After generating embeddings, you need to store them in a database that supports vector similarity search. This example shows how to store embeddings in various vector databases for later retrieval.
- PgVector
 - PineconeVector
 - QdrantVector
 - ChromaVector
 - AstraVector
 - LibSQLVector
 - UpstashVector
 - CloudflareVector
 - MongoDBVector
 - OpenSearchVector
 - CouchbaseVector
 - LanceVectorStore
 
The PgVector class provides methods to create indexes and insert embeddings into PostgreSQL with the pgvector extension.
import { openai } from "@ai-sdk/openai";
import { PgVector } from "@mastra/pg";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const pgVector = new PgVector({
  connectionString: process.env.POSTGRES_CONNECTION_STRING!,
});
await pgVector.createIndex({
  indexName: "test_index",
  dimension: 1536,
});
await pgVector.upsert({
  indexName: "test_index",
  vectors: embeddings,
  metadata: chunks?.map((chunk: any) => ({ text: chunk.text })),
});
View source on GitHub
The PineconeVector class provides methods to create indexes and insert embeddings into Pinecone, a managed vector database service.
import { openai } from "@ai-sdk/openai";
import { PineconeVector } from "@mastra/pinecone";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const pinecone = new PineconeVector({
  apiKey: process.env.PINECONE_API_KEY!,
});
await pinecone.createIndex({
  indexName: "testindex",
  dimension: 1536,
});
await pinecone.upsert({
  indexName: "testindex",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
View source on GitHub
The QdrantVector class provides methods to create collections and insert embeddings into Qdrant, a high-performance vector database.
import { openai } from "@ai-sdk/openai";
import { QdrantVector } from "@mastra/qdrant";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
  maxRetries: 3,
});
const qdrant = new QdrantVector({
  url: process.env.QDRANT_URL,
  apiKey: process.env.QDRANT_API_KEY,
});
await qdrant.createIndex({
  indexName: "test_collection",
  dimension: 1536,
});
await qdrant.upsert({
  indexName: "test_collection",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
The ChromaVector class provides methods to create collections and insert embeddings into Chroma, an open-source embedding database.
import { openai } from "@ai-sdk/openai";
import { ChromaVector } from "@mastra/chroma";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
// Running Chroma locally
const store = new ChromaVector();
// Running on Chroma Cloud
const store = new ChromaVector({
  apiKey: process.env.CHROMA_API_KEY,
  tenant: process.env.CHROMA_TENANT,
  database: process.env.CHROMA_DATABASE,
});
await store.createIndex({
  indexName: "test_collection",
  dimension: 1536,
});
await chroma.upsert({
  indexName: "test_collection",
  vectors: embeddings,
  metadata: chunks.map((chunk) => ({ text: chunk.text })),
  documents: chunks.map((chunk) => chunk.text),
});
View source on GitHub
he AstraVector class provides methods to create collections and insert embeddings into DataStax Astra DB, a cloud-native vector database.
import { openai } from "@ai-sdk/openai";
import { AstraVector } from "@mastra/astra";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  model: openai.embedding("text-embedding-3-small"),
  values: chunks.map((chunk) => chunk.text),
});
const astra = new AstraVector({
  token: process.env.ASTRA_DB_TOKEN,
  endpoint: process.env.ASTRA_DB_ENDPOINT,
  keyspace: process.env.ASTRA_DB_KEYSPACE,
});
await astra.createIndex({
  indexName: "test_collection",
  dimension: 1536,
});
await astra.upsert({
  indexName: "test_collection",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
The LibSQLVector class provides methods to create collections and insert embeddings into LibSQL, a fork of SQLite with vector extensions.
import { openai } from "@ai-sdk/openai";
import { LibSQLVector } from "@mastra/core/vector/libsql";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const libsql = new LibSQLVector({
  connectionUrl: process.env.DATABASE_URL,
  authToken: process.env.DATABASE_AUTH_TOKEN, // Optional: for Turso cloud databases
});
await libsql.createIndex({
  indexName: "test_collection",
  dimension: 1536,
});
await libsql.upsert({
  indexName: "test_collection",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
View source on GitHub
The UpstashVector class provides methods to create collections and insert embeddings into Upstash Vector, a serverless vector database.
import { openai } from "@ai-sdk/openai";
import { UpstashVector } from "@mastra/upstash";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const upstash = new UpstashVector({
  url: process.env.UPSTASH_URL,
  token: process.env.UPSTASH_TOKEN,
});
// There is no store.createIndex call here, Upstash creates indexes (known as namespaces in Upstash) automatically
// when you upsert if that namespace does not exist yet.
await upstash.upsert({
  indexName: "test_collection", // the namespace name in Upstash
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
The CloudflareVector class provides methods to create collections and insert embeddings into Cloudflare Vectorize, a serverless vector database service.
import { openai } from "@ai-sdk/openai";
import { CloudflareVector } from "@mastra/vectorize";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const vectorize = new CloudflareVector({
  accountId: process.env.CF_ACCOUNT_ID,
  apiToken: process.env.CF_API_TOKEN,
});
await vectorize.createIndex({
  indexName: "test_collection",
  dimension: 1536,
});
await vectorize.upsert({
  indexName: "test_collection",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
The MongoDBVector class provides methods to create indexes and insert embeddings into MongoDB with Atlas Search.
import { openai } from "@ai-sdk/openai";
import { MongoDBVector } from "@mastra/mongodb";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const vectorDB = new MongoDBVector({
  uri: process.env.MONGODB_URI!,
  dbName: process.env.MONGODB_DB_NAME!,
});
await vectorDB.createIndex({
  indexName: "test_index",
  dimension: 1536,
});
await vectorDB.upsert({
  indexName: "test_index",
  vectors: embeddings,
  metadata: chunks?.map((chunk: any) => ({ text: chunk.text })),
});
The OpenSearchVector class provides methods to create indexes and insert embeddings into OpenSearch, a distributed search engine with vector search capabilities.
import { openai } from "@ai-sdk/openai";
import { OpenSearchVector } from "@mastra/opensearch";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const vectorDB = new OpenSearchVector({
  uri: process.env.OPENSEARCH_URI!,
});
await vectorDB.createIndex({
  indexName: "test_index",
  dimension: 1536,
});
await vectorDB.upsert({
  indexName: "test_index",
  vectors: embeddings,
  metadata: chunks?.map((chunk: any) => ({ text: chunk.text })),
});
The CouchbaseVector class provides methods to create indexes and insert embeddings into Couchbase, a distributed NoSQL database with vector search capabilities.
import { openai } from "@ai-sdk/openai";
import { CouchbaseVector } from "@mastra/couchbase";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const couchbase = new CouchbaseVector({
  connectionString: process.env.COUCHBASE_CONNECTION_STRING,
  username: process.env.COUCHBASE_USERNAME,
  password: process.env.COUCHBASE_PASSWORD,
  bucketName: process.env.COUCHBASE_BUCKET,
  scopeName: process.env.COUCHBASE_SCOPE,
  collectionName: process.env.COUCHBASE_COLLECTION,
});
await couchbase.createIndex({
  indexName: "test_collection",
  dimension: 1536,
});
await couchbase.upsert({
  indexName: "test_collection",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
The LanceVectorStore class provides methods to create tables, indexes and insert embeddings into LanceDB, an embedded vector database built on the Lance columnar format.
import { openai } from "@ai-sdk/openai";
import { LanceVectorStore } from "@mastra/lance";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
  values: chunks.map((chunk) => chunk.text),
  model: openai.embedding("text-embedding-3-small"),
});
const lance = await LanceVectorStore.create("/path/to/db");
// In LanceDB you need to create a table first
await lance.createIndex({
  tableName: "myVectors",
  indexName: "vector",
  dimension: 1536,
});
await lance.upsert({
  tableName: "myVectors",
  vectors: embeddings,
  metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});