# Turbopuffer Vector Store The TurbopufferVector class provides vector search using [Turbopuffer](https://turbopuffer.com/), a high-performance vector database optimized for RAG applications. Turbopuffer offers fast vector similarity search with advanced filtering capabilities and efficient storage management. ## Constructor Options **apiKey:** (`string`): The API key to authenticate with Turbopuffer **baseUrl?:** (`string`): The base URL for the Turbopuffer API (Default: `https://api.turbopuffer.com`) **connectTimeout?:** (`number`): The timeout to establish a connection, in ms. Only applicable in Node and Deno. (Default: `10000`) **connectionIdleTimeout?:** (`number`): The socket idle timeout, in ms. Only applicable in Node and Deno. (Default: `60000`) **warmConnections?:** (`number`): The number of connections to open initially when creating a new client. (Default: `0`) **compression?:** (`boolean`): Whether to compress requests and accept compressed responses. (Default: `true`) **schemaConfigForIndex?:** (`function`): A callback function that takes an index name and returns a config object for that index. This allows you to define explicit schemas per index. ## Methods ### createIndex() **indexName:** (`string`): Name of the index to create **dimension:** (`number`): Vector dimension (must match your embedding model) **metric?:** (`'cosine' | 'euclidean' | 'dotproduct'`): Distance metric for similarity search (Default: `cosine`) ### upsert() **vectors:** (`number[][]`): Array of embedding vectors **metadata?:** (`Record[]`): Metadata for each vector **ids?:** (`string[]`): Optional vector IDs (auto-generated if not provided) ### query() **indexName:** (`string`): Name of the index to query **queryVector:** (`number[]`): Query vector to find similar vectors **topK?:** (`number`): Number of results to return (Default: `10`) **filter?:** (`Record`): Metadata filters for the query **includeVector?:** (`boolean`): Whether to include vectors in the results (Default: `false`) ### listIndexes() Returns an array of index names as strings. ### describeIndex() **indexName:** (`string`): Name of the index to describe Returns: ```typescript interface IndexStats { dimension: number; count: number; metric: "cosine" | "euclidean" | "dotproduct"; } ``` ### deleteIndex() **indexName:** (`string`): Name of the index to delete ### updateVector() Update a single vector by ID or by metadata filter. Either `id` or `filter` must be provided, but not both. **indexName:** (`string`): Name of the index containing the vector **id?:** (`string`): ID of the vector to update (mutually exclusive with filter) **filter?:** (`Record`): Metadata filter to identify vector(s) to update (mutually exclusive with id) **update:** (`{ vector?: number[]; metadata?: Record; }`): Object containing the vector and/or metadata to update ### deleteVector() **indexName:** (`string`): Name of the index containing the vector **id:** (`string`): ID of the vector to delete ### deleteVectors() Delete multiple vectors by IDs or by metadata filter. Either `ids` or `filter` must be provided, but not both. **indexName:** (`string`): Name of the index containing the vectors to delete **ids?:** (`string[]`): Array of vector IDs to delete (mutually exclusive with filter) **filter?:** (`Record`): Metadata filter to identify vectors to delete (mutually exclusive with ids) ## Response Types Query results are returned in this format: ```typescript interface QueryResult { id: string; score: number; metadata: Record; vector?: number[]; // Only included if includeVector is true } ``` ## Schema Configuration The `schemaConfigForIndex` option allows you to define explicit schemas for different indexes: ```typescript schemaConfigForIndex: (indexName: string) => { // Mastra's default embedding model and index for memory messages: if (indexName === "memory_messages_384") { return { dimensions: 384, schema: { thread_id: { type: "string", filterable: true, }, }, }; } else { throw new Error(`TODO: add schema for index: ${indexName}`); } }; ``` ## Error Handling The store throws typed errors that can be caught: ```typescript try { await store.query({ indexName: "index_name", queryVector: queryVector, }); } catch (error) { if (error instanceof VectorStoreError) { console.log(error.code); // 'connection_failed' | 'invalid_dimension' | etc console.log(error.details); // Additional error context } } ``` ## Related - [Metadata Filters](https://mastra.ai/reference/rag/metadata-filters)