# MongoDB Vector Store The `MongoDBVector` class provides vector search using [MongoDB Atlas Vector Search](https://www.mongodb.com/docs/atlas/atlas-vector-search/). It enables efficient similarity search and metadata filtering within your MongoDB collections. ## Installation **npm**: ```bash npm install @mastra/mongodb@latest ``` **pnpm**: ```bash pnpm add @mastra/mongodb@latest ``` **Yarn**: ```bash yarn add @mastra/mongodb@latest ``` **Bun**: ```bash bun add @mastra/mongodb@latest ``` ## Usage Example ```typescript import { MongoDBVector } from "@mastra/mongodb"; const store = new MongoDBVector({ id: 'mongodb-vector', uri: process.env.MONGODB_URI, dbName: process.env.MONGODB_DATABASE, }); ``` ### Custom Embedding Field Path If you need to store embeddings in a nested field structure (e.g., to integrate with existing MongoDB collections), use the `embeddingFieldPath` option: ```typescript import { MongoDBVector } from "@mastra/mongodb"; const store = new MongoDBVector({ id: 'mongodb-vector', uri: process.env.MONGODB_URI, dbName: process.env.MONGODB_DATABASE, embeddingFieldPath: 'text.contentEmbedding', // Store embeddings at text.contentEmbedding }); ``` ## Constructor Options **id:** (`string`): Unique identifier for this vector store instance **uri:** (`string`): MongoDB connection string **dbName:** (`string`): Name of the MongoDB database to use **options?:** (`MongoClientOptions`): Optional MongoDB client options **embeddingFieldPath?:** (`string`): Path to the field that stores vector embeddings. Supports nested paths using dot notation (e.g., 'text.contentEmbedding'). (Default: `embedding`) ## Methods ### createIndex() Creates a new vector index (collection) in MongoDB. **indexName:** (`string`): Name of the collection to create **dimension:** (`number`): Vector dimension (must match your embedding model) **metric?:** (`'cosine' | 'euclidean' | 'dotproduct'`): Distance metric for similarity search (Default: `cosine`) ### upsert() Adds or updates vectors and their metadata in the collection. **indexName:** (`string`): Name of the collection to insert into **vectors:** (`number[][]`): Array of embedding vectors **metadata?:** (`Record[]`): Metadata for each vector **ids?:** (`string[]`): Optional vector IDs (auto-generated if not provided) ### query() Searches for similar vectors with optional metadata filtering. **indexName:** (`string`): Name of the collection to search in **queryVector:** (`number[]`): Query vector to find similar vectors for **topK?:** (`number`): Number of results to return (Default: `10`) **filter?:** (`Record`): Metadata filters (applies to the \`metadata\` field) **documentFilter?:** (`Record`): Filters on original document fields (not just metadata) **includeVector?:** (`boolean`): Whether to include vector data in results (Default: `false`) **minScore?:** (`number`): Minimum similarity score threshold (Default: `0`) ### describeIndex() Returns information about the index (collection). **indexName:** (`string`): Name of the collection to describe Returns: ```typescript interface IndexStats { dimension: number; count: number; metric: "cosine" | "euclidean" | "dotproduct"; } ``` ### deleteIndex() Deletes a collection and all its data. **indexName:** (`string`): Name of the collection to delete ### listIndexes() Lists all vector collections in the MongoDB database. Returns: `Promise` ### updateVector() Update a single vector by ID or by metadata filter. Either `id` or `filter` must be provided, but not both. **indexName:** (`string`): Name of the collection containing the vector **id?:** (`string`): ID of the vector entry to update (mutually exclusive with filter) **filter?:** (`Record`): Metadata filter to identify vector(s) to update (mutually exclusive with id) **update:** (`object`): Update data containing vector and/or metadata **update.vector?:** (`number[]`): New vector data to update **update.metadata?:** (`Record`): New metadata to update ### deleteVector() Deletes a specific vector entry from an index by its ID. **indexName:** (`string`): Name of the collection containing the vector **id:** (`string`): ID of the vector entry to delete ### deleteVectors() Delete multiple vectors by IDs or by metadata filter. Either `ids` or `filter` must be provided, but not both. **indexName:** (`string`): Name of the collection containing the vectors to delete **ids?:** (`string[]`): Array of vector IDs to delete (mutually exclusive with filter) **filter?:** (`Record`): Metadata filter to identify vectors to delete (mutually exclusive with ids) ### disconnect() Closes the MongoDB client connection. Should be called when done using the store. ## Response Types Query results are returned in this format: ```typescript interface QueryResult { id: string; score: number; metadata: Record; vector?: number[]; // Only included if includeVector is true } ``` ## Error Handling The store throws typed errors that can be caught: ```typescript try { await store.query({ indexName: "my_collection", queryVector: queryVector, }); } catch (error) { // Handle specific error cases if (error.message.includes("Invalid collection name")) { console.error( "Collection name must start with a letter or underscore and contain only valid characters.", ); } else if (error.message.includes("Collection not found")) { console.error("The specified collection does not exist"); } else { console.error("Vector store error:", error.message); } } ``` ## Best Practices - Index metadata fields used in filters for optimal query performance. - Use consistent field naming in metadata to avoid unexpected query results. - Regularly monitor index and collection statistics to ensure efficient search. ## Usage Example ### Vector embeddings with MongoDB Embeddings are numeric vectors used by memory's `semanticRecall` to retrieve related messages by meaning (not keywords). > Note: You must use a deployment hosted on MongoDB Atlas to successfully use the MongoDB Vector database. This setup uses FastEmbed, a local embedding model, to generate vector embeddings. To use this, install `@mastra/fastembed`: **npm**: ```bash npm install @mastra/fastembed@latest ``` **pnpm**: ```bash pnpm add @mastra/fastembed@latest ``` **Yarn**: ```bash yarn add @mastra/fastembed@latest ``` **Bun**: ```bash bun add @mastra/fastembed@latest ``` Add the following to your agent: ```typescript import { Memory } from "@mastra/memory"; import { Agent } from "@mastra/core/agent"; import { MongoDBStore, MongoDBVector } from "@mastra/mongodb"; import { fastembed } from "@mastra/fastembed"; export const mongodbAgent = new Agent({ id: "mongodb-agent", name: "mongodb-agent", instructions: "You are an AI agent with the ability to automatically recall memories from previous interactions.", model: "openai/gpt-5.1", memory: new Memory({ storage: new MongoDBStore({ id: 'mongodb-storage', uri: process.env.MONGODB_URI!, dbName: process.env.MONGODB_DB_NAME!, }), vector: new MongoDBVector({ id: 'mongodb-vector', uri: process.env.MONGODB_URI!, dbName: process.env.MONGODB_DB_NAME!, }), embedder: fastembed, options: { lastMessages: 10, semanticRecall: { topK: 3, messageRange: 2, }, generateTitle: true, // generates descriptive thread titles automatically }, }), }); ``` ## Related - [Metadata Filters](https://mastra.ai/reference/rag/metadata-filters)