# Lance Vector Store The LanceVectorStore class provides vector search using [LanceDB](https://lancedb.github.io/lancedb/), an embedded vector database built on the Lance columnar format. It offers efficient storage and fast similarity search for both local development and production deployments. ## Factory Method The LanceVectorStore uses a factory pattern for creation. You should use the static `create()` method rather than the constructor directly. **uri:** (`string`): Path to LanceDB database or URI for cloud deployments **options?:** (`ConnectionOptions`): Additional connection options for LanceDB ## Constructor Examples You can create a `LanceVectorStore` instance using the static create method: ```ts import { LanceVectorStore } from "@mastra/lance"; // Connect to a local database const vectorStore = await LanceVectorStore.create("/path/to/db"); // Connect to a LanceDB cloud database const cloudStore = await LanceVectorStore.create("db://host:port"); // Connect to a cloud database with options const s3Store = await LanceVectorStore.create("s3://bucket/db", { storageOptions: { timeout: "60s" }, }); ``` ## Methods ### createIndex() **tableName:** (`string`): Name of the table to create index in **indexName:** (`string`): Name of the index (column name) to create **dimension:** (`number`): Vector dimension (must match your embedding model) **metric?:** (`'cosine' | 'euclidean' | 'dotproduct'`): Distance metric for similarity search (Default: `cosine`) **indexConfig?:** (`LanceIndexConfig`): Index configuration (Default: `{ type: 'hnsw' }`) #### LanceIndexConfig **type:** (`'ivfflat' | 'hnsw'`): stringivfflat:ivfflatClusters vectors into lists for approximate search.hnsw:hnswGraph-based index offering fast search times and high recall. (Default: `hnsw`) **numPartitions?:** (`number`): Number of partitions for IVF indexes (Default: `128`) **numSubVectors?:** (`number`): Number of sub-vectors for product quantization (Default: `16`) **hnsw?:** (`HNSWConfig`): objectm?:numberMaximum number of connections per node (default: 16)efConstruction?:numberBuild-time complexity (default: 100) ### createTable() **tableName:** (`string`): Name of the table to create **data:** (`Record[] | TableLike`): Initial data for the table **options?:** (`Partial`): Additional table creation options ### upsert() **tableName:** (`string`): Name of the table to upsert vectors into **vectors:** (`number[][]`): Array of embedding vectors **metadata?:** (`Record[]`): Metadata for each vector **ids?:** (`string[]`): Optional vector IDs (auto-generated if not provided) ### query() **tableName:** (`string`): Name of the table to query **queryVector:** (`number[]`): Query vector **topK?:** (`number`): Number of results to return (Default: `10`) **filter?:** (`Record`): Metadata filters **includeVector?:** (`boolean`): Whether to include the vector in the result (Default: `false`) **columns?:** (`string[]`): Specific columns to include in the result (Default: `[]`) **includeAllColumns?:** (`boolean`): Whether to include all columns in the result (Default: `false`) ### listTables() Returns an array of table names as strings. ```typescript const tables = await vectorStore.listTables(); // ['my_vectors', 'embeddings', 'documents'] ``` ### getTableSchema() **tableName:** (`string`): Name of the table to describe Returns the schema of the specified table. ### deleteTable() **tableName:** (`string`): Name of the table to delete ### deleteAllTables() Deletes all tables in the database. ### listIndexes() Returns an array of index names as strings. ### describeIndex() **indexName:** (`string`): Name of the index to describe Returns information about the index: ```typescript interface IndexStats { dimension: number; count: number; metric: "cosine" | "euclidean" | "dotproduct"; type: "ivfflat" | "hnsw"; config: { m?: number; efConstruction?: number; numPartitions?: number; numSubVectors?: number; }; } ``` ### deleteIndex() **indexName:** (`string`): Name of the index to delete ### updateVector() Update a single vector by ID or by metadata filter. Either `id` or `filter` must be provided, but not both. **indexName:** (`string`): Name of the index containing the vector **id?:** (`string`): ID of the vector to update (mutually exclusive with filter) **filter?:** (`Record`): Metadata filter to identify vector(s) to update (mutually exclusive with id) **update:** (`{ vector?: number[]; metadata?: Record; }`): Object containing the vector and/or metadata to update ### deleteVector() **indexName:** (`string`): Name of the index containing the vector **id:** (`string`): ID of the vector to delete ### deleteVectors() Delete multiple vectors by IDs or by metadata filter. Either `ids` or `filter` must be provided, but not both. **indexName:** (`string`): Name of the index containing the vectors to delete **ids?:** (`string[]`): Array of vector IDs to delete (mutually exclusive with filter) **filter?:** (`Record`): Metadata filter to identify vectors to delete (mutually exclusive with ids) ### close() Closes the database connection. ## Response Types Query results are returned in this format: ```typescript interface QueryResult { id: string; score: number; metadata: Record; vector?: number[]; // Only included if includeVector is true document?: string; // Document text if available } ``` ## Error Handling The store throws typed errors that can be caught: ```typescript try { await store.query({ tableName: "my_vectors", queryVector: queryVector, }); } catch (error) { if (error instanceof Error) { console.log(error.message); } } ``` ## Best Practices - Use the appropriate index type for your use case: - HNSW for better recall and performance when memory isn't constrained - IVF for better memory efficiency with large datasets - For optimal performance with large datasets, consider adjusting `numPartitions` and `numSubVectors` values - Use `close()` method to properly close connections when done with the database - Store metadata with a consistent schema to simplify filtering operations ## Related - [Metadata Filters](https://mastra.ai/reference/rag/metadata-filters)