libSQL Vector Store
The libSQL storage implementation provides a SQLite-compatible vector search libSQL, a fork of SQLite with vector extensions, and Turso with vector extensions, offering a lightweight and efficient vector database solution.
It's part of the @mastra/libsql package and offers efficient vector similarity search with metadata filtering.
InstallationDirect link to Installation
npm install @mastra/libsql@beta
UsageDirect link to Usage
import { LibSQLVector } from "@mastra/libsql";
// Create a new vector store instance
const store = new LibSQLVector({
id: 'libsql-vector',
connectionUrl: process.env.DATABASE_URL,
// Optional: for Turso cloud databases
authToken: process.env.DATABASE_AUTH_TOKEN,
});
// Create an index
await store.createIndex({
indexName: "myCollection",
dimension: 1536,
});
// Add vectors with metadata
const vectors = [[0.1, 0.2, ...], [0.3, 0.4, ...]];
const metadata = [
{ text: "first document", category: "A" },
{ text: "second document", category: "B" }
];
await store.upsert({
indexName: "myCollection",
vectors,
metadata,
});
// Query similar vectors
const queryVector = [0.1, 0.2, ...];
const results = await store.query({
indexName: "myCollection",
queryVector,
topK: 10, // top K results
filter: { category: "A" } // optional metadata filter
});
Constructor OptionsDirect link to Constructor Options
connectionUrl:
authToken?:
syncUrl?:
syncInterval?:
MethodsDirect link to Methods
createIndex()Direct link to createIndex()
Creates a new vector collection. The index name must start with a letter or underscore and can only contain letters, numbers, and underscores. The dimension must be a positive integer.
indexName:
dimension:
metric?:
upsert()Direct link to upsert()
Adds or updates vectors and their metadata in the index. Uses a transaction to ensure all vectors are inserted atomically - if any insert fails, the entire operation is rolled back.
indexName:
vectors:
metadata?:
ids?:
query()Direct link to query()
Searches for similar vectors with optional metadata filtering.
indexName:
queryVector:
topK?:
filter?:
includeVector?:
minScore?:
describeIndex()Direct link to describeIndex()
Gets information about an index.
indexName:
Returns:
interface IndexStats {
dimension: number;
count: number;
metric: "cosine" | "euclidean" | "dotproduct";
}
deleteIndex()Direct link to deleteIndex()
Deletes an index and all its data.
indexName:
listIndexes()Direct link to listIndexes()
Lists all vector indexes in the database.
Returns: Promise<string[]>
truncateIndex()Direct link to truncateIndex()
Removes all vectors from an index while keeping the index structure.
indexName:
updateVector()Direct link to updateVector()
Update a single vector by ID or by metadata filter. Either id or filter must be provided, but not both.
indexName:
id?:
filter?:
update:
update.vector?:
update.metadata?:
deleteVector()Direct link to deleteVector()
Deletes a specific vector entry from an index by its ID.
indexName:
id:
deleteVectors()Direct link to deleteVectors()
Delete multiple vectors by IDs or by metadata filter. Either ids or filter must be provided, but not both.
indexName:
ids?:
filter?:
Response TypesDirect link to Response Types
Query results are returned in this format:
interface QueryResult {
id: string;
score: number;
metadata: Record<string, any>;
vector?: number[]; // Only included if includeVector is true
}
Error HandlingDirect link to Error Handling
The store throws specific errors for different failure cases:
try {
await store.query({
indexName: "my-collection",
queryVector: queryVector,
});
} catch (error) {
// Handle specific error cases
if (error.message.includes("Invalid index name format")) {
console.error(
"Index name must start with a letter/underscore and contain only alphanumeric characters",
);
} else if (error.message.includes("Table not found")) {
console.error("The specified index does not exist");
} else {
console.error("Vector store error:", error.message);
}
}
Common error cases include:
- Invalid index name format
- Invalid vector dimensions
- Table/index not found
- Database connection issues
- Transaction failures during upsert
Usage ExampleDirect link to Usage Example
Local embeddings with fastembedDirect link to Local embeddings with fastembed
Embeddings are numeric vectors used by memory's semanticRecall to retrieve related messages by meaning (not keywords). This setup uses @mastra/fastembed to generate vector embeddings.
Install fastembed to get started:
npm install @mastra/fastembed@beta
Add the following to your agent:
import { Memory } from "@mastra/memory";
import { Agent } from "@mastra/core/agent";
import { LibSQLStore, LibSQLVector } from "@mastra/libsql";
import { fastembed } from "@mastra/fastembed";
export const libsqlAgent = new Agent({
id: "libsql-agent",
name: "libSQL Agent",
instructions:
"You are an AI agent with the ability to automatically recall memories from previous interactions.",
model: "openai/gpt-5.1",
memory: new Memory({
storage: new LibSQLStore({
id: 'libsql-agent-storage',
url: "file:libsql-agent.db",
}),
vector: new LibSQLVector({
id: 'libsql-agent-vector',
connectionUrl: "file:libsql-agent.db",
}),
embedder: fastembed,
options: {
lastMessages: 10,
semanticRecall: {
topK: 3,
messageRange: 2,
},
threads: {
generateTitle: true, // Explicitly enable automatic title generation
},
},
}),
});