Upstash Storage
The Upstash storage implementation provides a serverless-friendly storage solution using Upstash's Redis-compatible key-value store.
Important: When using Mastra with Upstash, the pay-as-you-go model can result in unexpectedly high costs due to the high volume of Redis commands generated during agent conversations. We strongly recommend using a fixed pricing plan for predictable costs. See Upstash pricing for details and GitHub issue #5850 for context.
InstallationDirect link to Installation
npm install @mastra/upstash@beta
UsageDirect link to Usage
import { UpstashStore } from "@mastra/upstash";
const storage = new UpstashStore({
id: 'upstash-storage',
url: process.env.UPSTASH_URL,
token: process.env.UPSTASH_TOKEN,
});
ParametersDirect link to Parameters
url:
token:
prefix?:
Additional NotesDirect link to Additional Notes
Key StructureDirect link to Key Structure
The Upstash storage implementation uses a key-value structure:
- Thread keys:
{prefix}thread:{threadId} - Message keys:
{prefix}message:{messageId} - Metadata keys:
{prefix}metadata:{entityId}
Serverless BenefitsDirect link to Serverless Benefits
Upstash storage is particularly well-suited for serverless deployments:
- No connection management needed
- Pay-per-request pricing
- Global replication options
- Edge-compatible
Data PersistenceDirect link to Data Persistence
Upstash provides:
- Automatic data persistence
- Point-in-time recovery
- Cross-region replication options
Performance ConsiderationsDirect link to Performance Considerations
For optimal performance:
- Use appropriate key prefixes to organize data
- Monitor Redis memory usage
- Consider data expiration policies if needed
Usage ExampleDirect link to Usage Example
Adding memory to an agentDirect link to Adding memory to an agent
To add Upstash memory to an agent use the Memory class and create a new storage key using UpstashStore and a new vector key using UpstashVector. The configuration can point to either a remote service or a local setup.
import { Memory } from "@mastra/memory";
import { Agent } from "@mastra/core/agent";
import { UpstashStore } from "@mastra/upstash";
export const upstashAgent = new Agent({
id: "upstash-agent",
name: "Upstash Agent",
instructions:
"You are an AI agent with the ability to automatically recall memories from previous interactions.",
model: "openai/gpt-5.1",
memory: new Memory({
storage: new UpstashStore({
id: 'upstash-agent-storage',
url: process.env.UPSTASH_REDIS_REST_URL!,
token: process.env.UPSTASH_REDIS_REST_TOKEN!,
}),
options: {
generateTitle: true, // Explicitly enable automatic title generation
},
}),
});
Using the agentDirect link to Using the agent
Use memoryOptions to scope recall for this request. Set lastMessages: 5 to limit recency-based recall, and use semanticRecall to fetch the topK: 3 most relevant messages, including messageRange: 2 neighboring messages for context around each match.
import "dotenv/config";
import { mastra } from "./mastra";
const threadId = "123";
const resourceId = "user-456";
const agent = mastra.getAgent("upstashAgent");
const message = await agent.stream("My name is Mastra", {
memory: {
thread: threadId,
resource: resourceId,
},
});
await message.textStream.pipeTo(new WritableStream());
const stream = await agent.stream("What's my name?", {
memory: {
thread: threadId,
resource: resourceId,
},
memoryOptions: {
lastMessages: 5,
semanticRecall: {
topK: 3,
messageRange: 2,
},
},
});
for await (const chunk of stream.textStream) {
process.stdout.write(chunk);
}