# createTool() The `createTool()` function is used to define custom tools that your Mastra agents can execute. Tools extend an agent's capabilities by allowing it to interact with external systems, perform calculations, or access specific data. ## Usage example ```typescript import { createTool } from "@mastra/core/tools"; import { z } from "zod"; export const tool = createTool({ id: "test-tool", description: "Reverse the input string", inputSchema: z.object({ input: z.string(), }), outputSchema: z.object({ output: z.string(), }), execute: async (inputData) => { const reversed = inputData.input.split("").reverse().join(""); return { output: reversed, }; }, }); ``` ## Example with MCP Annotations When exposing tools via MCP (Model Context Protocol), you can add annotations to describe tool behavior and customize how clients display the tool. These MCP-specific properties are grouped under the `mcp` property: ```typescript import { createTool } from "@mastra/core/tools"; import { z } from "zod"; export const weatherTool = createTool({ id: "get-weather", description: "Get current weather for a location", inputSchema: z.object({ location: z.string().describe("City name or coordinates"), }), // MCP-specific properties mcp: { // Annotations for client behavior hints annotations: { title: "Weather Lookup", // Human-readable display name readOnlyHint: true, // Tool doesn't modify environment destructiveHint: false, // Tool doesn't perform destructive updates idempotentHint: true, // Same args = same result openWorldHint: true, // Interacts with external API }, // Custom metadata for client-specific functionality _meta: { version: "1.0.0", category: "weather", }, }, execute: async (inputData) => { const weather = await fetchWeather(inputData.location); return { weather }; }, }); ``` ## Parameters **id:** (`string`): A unique identifier for the tool. **description:** (`string`): A description of what the tool does. This is used by the agent to decide when to use the tool. **inputSchema?:** (`Zod schema`): A Zod schema defining the expected input parameters for the tool's \`execute\` function. **outputSchema?:** (`Zod schema`): A Zod schema defining the expected output structure of the tool's \`execute\` function. **suspendSchema?:** (`Zod schema`): A Zod schema defining the structure of the payload passed to \`suspend()\`. This payload is returned to the client when the tool suspends execution. **resumeSchema?:** (`Zod schema`): A Zod schema defining the expected structure of \`resumeData\` when the tool is resumed. Used by the agent to extract data from user messages when \`autoResumeSuspendedTools\` is enabled. **requireApproval?:** (`boolean`): When true, the tool requires explicit approval before execution. The agent will emit a \`tool-call-approval\` chunk and pause until approved or declined. **mcp?:** (`MCPToolProperties`): MCP-specific properties for tools exposed via Model Context Protocol. Includes \`annotations\` (tool behavior hints like \`title\`, \`readOnlyHint\`, \`destructiveHint\`, \`idempotentHint\`, \`openWorldHint\`) and \`\_meta\` (arbitrary metadata passed through to MCP clients). **requestContextSchema?:** (`Zod schema`): A Zod schema for validating request context values. When provided, the context is validated before execute() runs, returning an error object if validation fails. **execute:** (`function`): input:z.infer\The validated input data based on inputSchemacontext?:ToolExecutionContextOptional execution context containing metadata **onInputStart?:** (`function`): Optional callback invoked when the tool call input streaming begins. Receives \`toolCallId\`, \`messages\`, and \`abortSignal\`. **onInputDelta?:** (`function`): Optional callback invoked for each incremental chunk of input text as it streams in. Receives \`inputTextDelta\`, \`toolCallId\`, \`messages\`, and \`abortSignal\`. **onInputAvailable?:** (`function`): Optional callback invoked when the complete tool input is available and parsed. Receives the validated \`input\` object, \`toolCallId\`, \`messages\`, and \`abortSignal\`. **onOutput?:** (`function`): Optional callback invoked after the tool has successfully executed and returned output. Receives the tool's \`output\`, \`toolCallId\`, \`messages\`, and \`abortSignal\`. ## Returns The `createTool()` function returns a `Tool` object. **Tool:** (`object`): An object representing the defined tool, ready to be added to an agent. ## Tool Lifecycle Hooks Tools support lifecycle hooks that allow you to monitor and react to different stages of tool execution. These hooks are particularly useful for logging, analytics, validation, and real-time updates during streaming. ### Available Hooks #### onInputStart Called when tool call input streaming begins, before any input data is received. ```typescript export const tool = createTool({ id: "example-tool", description: "Example tool with hooks", onInputStart: ({ toolCallId, messages, abortSignal }) => { console.log(`Tool ${toolCallId} input streaming started`); }, }); ``` #### onInputDelta Called for each incremental chunk of input text as it streams in. Useful for showing real-time progress or parsing partial JSON. ```typescript export const tool = createTool({ id: "example-tool", description: "Example tool with hooks", onInputDelta: ({ inputTextDelta, toolCallId, messages, abortSignal }) => { console.log(`Received input chunk: ${inputTextDelta}`); }, }); ``` #### onInputAvailable Called when the complete tool input is available and has been parsed and validated against the `inputSchema`. ```typescript export const tool = createTool({ id: "example-tool", description: "Example tool with hooks", inputSchema: z.object({ city: z.string(), }), onInputAvailable: ({ input, toolCallId, messages, abortSignal }) => { console.log(`Tool received complete input:`, input); // input is fully typed based on inputSchema }, }); ``` #### onOutput Called after the tool has successfully executed and returned output. Useful for logging results, triggering follow-up actions, or analytics. ```typescript export const tool = createTool({ id: "example-tool", description: "Example tool with hooks", outputSchema: z.object({ result: z.string(), }), execute: async (input) => { return { result: "Success" }; }, onOutput: ({ output, toolCallId, toolName, abortSignal }) => { console.log(`${toolName} execution completed:`, output); // output is fully typed based on outputSchema }, }); ``` ### Hook Execution Order For a typical streaming tool call, the hooks are invoked in this order: 1. **onInputStart** - Input streaming begins 2. **onInputDelta** - Called multiple times as chunks arrive 3. **onInputAvailable** - Complete input is parsed and validated 4. Tool's **execute** function runs 5. **onOutput** - Tool has completed successfully ### Hook Parameters All hooks receive a parameter object with these common properties: - `toolCallId` (string): Unique identifier for this specific tool call - `abortSignal` (AbortSignal): Signal for detecting if the operation should be cancelled Additionally: - `onInputStart`, `onInputDelta`, and `onInputAvailable` receive `messages` (array): The conversation messages at the time of the tool call - `onInputDelta` receives `inputTextDelta` (string): The incremental text chunk - `onInputAvailable` receives `input`: The validated input data (typed according to `inputSchema`) - `onOutput` receives `output`: The tool's return value (typed according to `outputSchema`) and `toolName` (string): The name of the tool ### Error Handling Hook errors are caught and logged automatically, but do not prevent tool execution from continuing. If a hook throws an error, it will be logged to the console but will not fail the tool call. ## MCP Tool Annotations When exposing tools via the Model Context Protocol (MCP), you can provide annotations that describe tool behavior. These annotations help MCP clients like OpenAI Apps SDK understand how to present and handle your tools. MCP-specific properties are grouped under the `mcp` property, which includes `annotations` and `_meta`: ```typescript mcp: { annotations: { /* behavior hints */ }, _meta: { /* custom metadata */ }, } ``` ### ToolAnnotations Properties **title?:** (`string`): A human-readable title for the tool. Used for display purposes in UI components. **readOnlyHint?:** (`boolean`): If true, the tool does not modify its environment. This hint indicates the tool only reads data and has no side effects. Defaults to false. **destructiveHint?:** (`boolean`): If true, the tool may perform destructive updates to its environment. If false, the tool performs only additive updates. This hint helps clients determine if confirmation should be required. Defaults to true. **idempotentHint?:** (`boolean`): If true, calling the tool repeatedly with the same arguments will have no additional effect on its environment. This hint indicates idempotent behavior. Defaults to false. **openWorldHint?:** (`boolean`): If true, this tool may interact with an 'open world' of external entities (e.g., web search, external APIs). If false, the tool's domain is closed and fully defined. Defaults to true. These annotations follow the [MCP specification](https://spec.modelcontextprotocol.io/specification/2025-03-26/server/tools/#tool-annotations) and are passed through when tools are listed via MCP. ## Related - [MCP Overview](https://mastra.ai/docs/mcp/overview) - [Using Tools with Agents](https://mastra.ai/docs/agents/using-tools) - [Agent Approval](https://mastra.ai/docs/agents/agent-approval) - [Tool Streaming](https://mastra.ai/docs/streaming/tool-streaming) - [Request Context](https://mastra.ai/docs/server/request-context)