# Agent.stream() The `.stream()` method enables real-time streaming of responses from an agent with enhanced capabilities and format flexibility. This method accepts messages and optional streaming options, providing a next-generation streaming experience with support for both Mastra's native format and AI SDK v5+ compatibility. ## Usage example ```ts const stream = await agent.stream("message for agent"); ``` > **Info:** **Model Compatibility**: This method is designed for V2 models. V1 models should use the [`.streamLegacy()`](https://mastra.ai/reference/streaming/agents/streamLegacy) method. The framework automatically detects your model version and will throw an error if there's a mismatch. ## Parameters **messages:** (`string | string[] | CoreMessage[] | AiMessageType[] | UIMessageWithMetadata[]`): The messages to send to the agent. Can be a single string, array of strings, or structured message objects. **options?:** (`AgentExecutionOptions`): Optional configuration for the streaming process. ### Options **maxSteps?:** (`number`): Maximum number of steps to run during execution. **scorers?:** (`MastraScorers | Record`): scorer:stringName of the scorer to use.sampling?:ScoringSamplingConfigSampling configuration for the scorer. **tracingContext?:** (`TracingContext`): Tracing context for span hierarchy and metadata. **returnScorerData?:** (`boolean`): Whether to return detailed scoring data in the response. **onChunk?:** (`(chunk: ChunkType) => Promise | void`): Callback function called for each chunk during streaming. **onError?:** (`({ error }: { error: Error | string }) => Promise | void`): Callback function called when an error occurs during streaming. **onAbort?:** (`(event: any) => Promise | void`): Callback function called when the stream is aborted. **abortSignal?:** (`AbortSignal`): Signal object that allows you to abort the agent's execution. When the signal is aborted, all ongoing operations will be terminated. **activeTools?:** (`Array | undefined`): Array of active tool names that can be used during execution. **prepareStep?:** (`PrepareStepFunction`): Callback function called before each step of multi-step execution. **context?:** (`ModelMessage[]`): Additional context messages to provide to the agent. **structuredOutput?:** (`StructuredOutputOptions`): schema:z.ZodSchema\Zod schema defining the expected output structure.model?:MastraLanguageModelLanguage model to use for structured output generation. If provided, enables the agent to respond in multi step with tool calls, text, and structured outputerrorStrategy?:'strict' | 'warn' | 'fallback'Strategy for handling schema validation errors. 'strict' throws errors, 'warn' logs warnings, 'fallback' uses fallback values.fallbackValue?:\Fallback value to use when schema validation fails and errorStrategy is 'fallback'.instructions?:stringAdditional instructions for the structured output model.jsonPromptInjection?:booleanInjects system prompt into the main agent instructing it to return structured output, useful for when a model does not natively support structured outputs.providerOptions?:ProviderOptionsProvider-specific options passed to the internal structuring agent. Use this to control model behavior like reasoning effort for thinking models (e.g., \`{ openai: { reasoningEffort: 'low' } }\`). **outputProcessors?:** (`Processor[]`): Overrides the output processors set on the agent. Output processors that can modify or validate messages from the agent before they are returned to the user. Must implement either (or both) of the \`processOutputResult\` and \`processOutputStream\` functions. **includeRawChunks?:** (`boolean`): Whether to include raw chunks in the stream output (not available on all model providers). **inputProcessors?:** (`Processor[]`): Overrides the input processors set on the agent. Input processors that can modify or validate messages before they are processed by the agent. Must implement the \`processInput\` function. **instructions?:** (`string`): Custom instructions that override the agent's default instructions for this specific generation. Useful for dynamically modifying agent behavior without creating a new agent instance. **system?:** (`string | string[] | CoreSystemMessage | SystemModelMessage | CoreSystemMessage[] | SystemModelMessage[]`): Custom system message(s) to include in the prompt. Can be a single string, message object, or array of either. System messages provide additional context or behavior instructions that supplement the agent's main instructions. **output?:** (`Zod schema | JsonSchema7`): \*\*Deprecated.\*\* Use structuredOutput without a model to achieve the same thing. Defines the expected structure of the output. Can be a JSON Schema object or a Zod schema. **memory?:** (`object`): thread:string | { id: string; metadata?: Record\, title?: string }The conversation thread, as a string ID or an object with an \`id\` and optional \`metadata\`.resource:stringIdentifier for the user or resource associated with the thread.options?:MemoryConfigConfiguration for memory behavior including lastMessages, readOnly, semanticRecall, and workingMemory. **onFinish?:** (`StreamTextOnFinishCallback | StreamObjectOnFinishCallback`): Callback function called when streaming completes. Receives the final result. **onStepFinish?:** (`StreamTextOnStepFinishCallback | never`): Callback function called after each execution step. Receives step details as a JSON string. Unavailable for structured output **telemetry?:** (`TelemetrySettings`): isEnabled?:booleanEnable or disable telemetry. Disabled by default while experimental.recordInputs?:booleanEnable or disable input recording. Enabled by default. You might want to disable input recording to avoid recording sensitive information.recordOutputs?:booleanEnable or disable output recording. Enabled by default. You might want to disable output recording to avoid recording sensitive information.functionId?:stringIdentifier for this function. Used to group telemetry data by function. **modelSettings?:** (`CallSettings`): temperature?:numberControls randomness in generation (0-2). Higher values make output more random.maxOutputTokens?:numberMaximum number of tokens to generate in the response. Note: Use maxOutputTokens (not maxTokens) as per AI SDK v5 convention.maxRetries?:numberMaximum number of retry attempts for failed requests.topP?:numberNucleus sampling parameter (0-1). Controls diversity of generated text.topK?:numberTop-k sampling parameter. Limits vocabulary to k most likely tokens.presencePenalty?:numberPenalty for token presence (-2 to 2). Reduces repetition.frequencyPenalty?:numberPenalty for token frequency (-2 to 2). Reduces repetition of frequent tokens.stopSequences?:string\[]Stop sequences. If set, the model will stop generating text when one of the stop sequences is generated. **toolChoice?:** (`'auto' | 'none' | 'required' | { type: 'tool'; toolName: string }`): 'auto':stringLet the model decide whether to use tools (default).'none':stringDo not use any tools.'required':stringRequire the model to use at least one tool.{ type: 'tool'; toolName: string }:objectRequire the model to use a specific tool by name. (Default: `'auto'`) **toolsets?:** (`ToolsetsInput`): Additional toolsets to make available to the agent during streaming. **clientTools?:** (`ToolsInput`): Tools that are executed on the 'client' side of the request. These tools do not have execute functions in the definition. **savePerStep?:** (`boolean`): Save messages incrementally after each stream step completes (default: false). **requireToolApproval?:** (`boolean`): When true, all tool calls require explicit approval before execution. The stream will emit \`tool-call-approval\` chunks and pause until \`approveToolCall()\` or \`declineToolCall()\` is called. **autoResumeSuspendedTools?:** (`boolean`): When true, automatically resumes suspended tools when the user sends a new message on the same thread. The agent extracts \`resumeData\` from the user's message based on the tool's \`resumeSchema\`. Requires memory to be configured. **toolCallConcurrency?:** (`number`): Maximum number of tool calls to execute concurrently. Defaults to 1 when approval may be required, otherwise 10. **providerOptions?:** (`Record>`): openai?:Record\OpenAI-specific options. Example: \`{ reasoningEffort: 'high' }\`anthropic?:Record\Anthropic-specific options. Example: \`{ maxTokens: 1000 }\`google?:Record\Google-specific options. Example: \`{ safetySettings: \[...] }\`\[providerName]?:Record\Other provider-specific options. The key is the provider name and the value is a record of provider-specific options. **runId?:** (`string`): Unique ID for this generation run. Useful for tracking and debugging purposes. **requestContext?:** (`RequestContext`): Request Context for dependency injection and contextual information. **tracingContext?:** (`TracingContext`): currentSpan?:SpanCurrent span for creating child spans and adding metadata. Use this to create custom child spans or update span attributes during execution. **tracingOptions?:** (`TracingOptions`): metadata?:Record\Metadata to add to the root trace span. Useful for adding custom attributes like user IDs, session IDs, or feature flags.requestContextKeys?:string\[]Additional RequestContext keys to extract as metadata for this trace. Supports dot notation for nested values (e.g., 'user.id').traceId?:stringTrace ID to use for this execution (1-32 hexadecimal characters). If provided, this trace will be part of the specified trace.parentSpanId?:stringParent span ID to use for this execution (1-16 hexadecimal characters). If provided, the root span will be created as a child of this span.tags?:string\[]Tags to apply to this trace. String labels for categorizing and filtering traces. ## Returns **stream:** (`MastraModelOutput`): Returns a MastraModelOutput instance that provides access to the streaming output. **traceId?:** (`string`): The trace ID associated with this execution when Tracing is enabled. Use this to correlate logs and debug execution flow. ## Extended usage example ### Mastra Format (Default) ```ts import { stepCountIs } from "ai-v5"; const stream = await agent.stream("Tell me a story", { stopWhen: stepCountIs(3), // Stop after 3 steps modelSettings: { temperature: 0.7, }, }); // Access text stream for await (const chunk of stream.textStream) { console.log(chunk); } // or access full stream for await (const chunk of stream.fullStream) { console.log(chunk); } // Get full text after streaming const fullText = await stream.text; ``` ### AI SDK v5+ Format To use the stream with AI SDK v5 (and later), you can convert it using our utility function `toAISdkStream`. ```ts import { stepCountIs, createUIMessageStreamResponse } from "ai"; import { toAISdkStream } from "@mastra/ai-sdk"; const stream = await agent.stream("Tell me a story", { stopWhen: stepCountIs(3), // Stop after 3 steps modelSettings: { temperature: 0.7, }, }); // In an API route for frontend integration return createUIMessageStreamResponse({ stream: toAISdkStream(stream, { from: "agent" }), }) ``` ### Using Callbacks All callback functions are now available as top-level properties for a cleaner API experience. ```ts const stream = await agent.stream("Tell me a story", { onFinish: (result) => { console.log("Streaming finished:", result); }, onStepFinish: (step) => { console.log("Step completed:", step); }, onChunk: (chunk) => { console.log("Received chunk:", chunk); }, onError: ({ error }) => { console.error("Streaming error:", error); }, onAbort: (event) => { console.log("Stream aborted:", event); }, }); // Process the stream for await (const chunk of stream.textStream) { console.log(chunk); } ``` ### Advanced Example with Options ```ts import { z } from "zod"; import { stepCountIs } from "ai"; await agent.stream("message for agent", { stopWhen: stepCountIs(3), // Stop after 3 steps modelSettings: { temperature: 0.7, }, memory: { thread: "user-123", resource: "test-app", }, toolChoice: "auto", // Structured output with better DX structuredOutput: { schema: z.object({ sentiment: z.enum(["positive", "negative", "neutral"]), confidence: z.number(), }), model: "openai/gpt-5.1", errorStrategy: "warn", }, // Output processors for streaming response validation outputProcessors: [ new ModerationProcessor({ model: "openrouter/openai/gpt-oss-safeguard-20b" }), new BatchPartsProcessor({ maxBatchSize: 3, maxWaitTime: 100 }), ], }); ``` ## Related - [Generating responses](https://mastra.ai/docs/agents/overview) - [Streaming responses](https://mastra.ai/docs/agents/overview) - [Agent Approval](https://mastra.ai/docs/agents/agent-approval)