Tool Call Accuracy Scorers
Mastra provides two tool call accuracy scorers for evaluating whether an LLM selects the correct tools from available options:
- Code-based scorer - Deterministic evaluation using exact tool matching
- LLM-based scorer - Semantic evaluation using AI to assess appropriateness
Choosing Between Scorers
Use the Code-Based Scorer When:
- You need deterministic, reproducible results
- You want to test exact tool matching
- You need to validate specific tool sequences
- Speed and cost are priorities (no LLM calls)
- You're running automated tests
Use the LLM-Based Scorer When:
- You need semantic understanding of appropriateness
- Tool selection depends on context and intent
- You want to handle edge cases like clarification requests
- You need explanations for scoring decisions
- You're evaluating production agent behavior
Code-Based Tool Call Accuracy Scorer
The createToolCallAccuracyScorerCode() function from @mastra/evals/scorers/code provides deterministic binary scoring based on exact tool matching and supports both strict and lenient evaluation modes, as well as tool calling order validation.
Parameters
expectedTool:
strictMode:
expectedToolOrder:
This function returns an instance of the MastraScorer class. See the MastraScorer reference for details on the .run() method and its input/output.
Evaluation Modes
The code-based scorer operates in two distinct modes:
Single Tool Mode
When expectedToolOrder is not provided, the scorer evaluates single tool selection:
- Standard Mode (strictMode: false): Returns
1if the expected tool is called, regardless of other tools - Strict Mode (strictMode: true): Returns
1only if exactly one tool is called and it matches the expected tool
Order Checking Mode
When expectedToolOrder is provided, the scorer validates tool calling sequence:
- Strict Order (strictMode: true): Tools must be called in exactly the specified order with no extra tools
- Flexible Order (strictMode: false): Expected tools must appear in correct relative order (extra tools allowed)
Code-Based Scoring Details
- Binary scores: Always returns 0 or 1
- Deterministic: Same input always produces same output
- Fast: No external API calls
Code-Based Scorer Options
// Standard mode - passes if expected tool is called
const lenientScorer = createCodeScorer({
expectedTool: "search-tool",
strictMode: false,
});
// Strict mode - only passes if exactly one tool is called
const strictScorer = createCodeScorer({
expectedTool: "search-tool",
strictMode: true,
});
// Order checking with strict mode
const strictOrderScorer = createCodeScorer({
expectedTool: "step1-tool",
expectedToolOrder: ["step1-tool", "step2-tool", "step3-tool"],
strictMode: true, // no extra tools allowed
});
Code-Based Scorer Results
{
runId: string,
preprocessStepResult: {
expectedTool: string,
actualTools: string[],
strictMode: boolean,
expectedToolOrder?: string[],
hasToolCalls: boolean,
correctToolCalled: boolean,
correctOrderCalled: boolean | null,
toolCallInfos: ToolCallInfo[]
},
score: number // Always 0 or 1
}
Code-Based Scorer Examples
The code-based scorer provides deterministic, binary scoring (0 or 1) based on exact tool matching.
Correct tool selection
const scorer = createToolCallAccuracyScorerCode({
expectedTool: "weather-tool",
});
// Simulate LLM input and output with tool call
const inputMessages = [
createUIMessage({
content: "What is the weather like in New York today?",
role: "user",
id: "input-1",
}),
];
const output = [
createUIMessage({
content: "Let me check the weather for you.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-123",
toolName: "weather-tool",
args: { location: "New York" },
result: { temperature: "72°F", condition: "sunny" },
state: "result",
}),
],
}),
];
const run = createAgentTestRun({ inputMessages, output });
const result = await scorer.run(run);
console.log(result.score); // 1
console.log(result.preprocessStepResult?.correctToolCalled); // true
Strict mode evaluation
Only passes if exactly one tool is called:
const strictScorer = createToolCallAccuracyScorerCode({
expectedTool: "weather-tool",
strictMode: true,
});
// Multiple tools called - fails in strict mode
const output = [
createUIMessage({
content: "Let me help you with that.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-1",
toolName: "search-tool",
args: {},
result: {},
state: "result",
}),
createToolInvocation({
toolCallId: "call-2",
toolName: "weather-tool",
args: { location: "New York" },
result: { temperature: "20°C" },
state: "result",
}),
],
}),
];
const result = await strictScorer.run(run);
console.log(result.score); // 0 - fails because multiple tools were called
Tool order validation
Validates that tools are called in a specific sequence:
const orderScorer = createToolCallAccuracyScorerCode({
expectedTool: "auth-tool", // ignored when order is specified
expectedToolOrder: ["auth-tool", "fetch-tool"],
strictMode: true, // no extra tools allowed
});
const output = [
createUIMessage({
content: "I will authenticate and fetch the data.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-1",
toolName: "auth-tool",
args: { token: "abc123" },
result: { authenticated: true },
state: "result",
}),
createToolInvocation({
toolCallId: "call-2",
toolName: "fetch-tool",
args: { endpoint: "/data" },
result: { data: ["item1"] },
state: "result",
}),
],
}),
];
const result = await orderScorer.run(run);
console.log(result.score); // 1 - correct order
Flexible order mode
Allows extra tools as long as expected tools maintain relative order:
const flexibleOrderScorer = createToolCallAccuracyScorerCode({
expectedTool: "auth-tool",
expectedToolOrder: ["auth-tool", "fetch-tool"],
strictMode: false, // allows extra tools
});
const output = [
createUIMessage({
content: "Performing comprehensive operation.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-1",
toolName: "auth-tool",
args: { token: "abc123" },
result: { authenticated: true },
state: "result",
}),
createToolInvocation({
toolCallId: "call-2",
toolName: "log-tool", // Extra tool - OK in flexible mode
args: { message: "Starting fetch" },
result: { logged: true },
state: "result",
}),
createToolInvocation({
toolCallId: "call-3",
toolName: "fetch-tool",
args: { endpoint: "/data" },
result: { data: ["item1"] },
state: "result",
}),
],
}),
];
const result = await flexibleOrderScorer.run(run);
console.log(result.score); // 1 - auth-tool comes before fetch-tool
LLM-Based Tool Call Accuracy Scorer
The createToolCallAccuracyScorerLLM() function from @mastra/evals/scorers/llm uses an LLM to evaluate whether the tools called by an agent are appropriate for the given user request, providing semantic evaluation rather than exact matching.
Parameters
model:
availableTools:
Features
The LLM-based scorer provides:
- Semantic Evaluation: Understands context and user intent
- Appropriateness Assessment: Distinguishes between "helpful" and "appropriate" tools
- Clarification Handling: Recognizes when agents appropriately ask for clarification
- Missing Tool Detection: Identifies tools that should have been called
- Reasoning Generation: Provides explanations for scoring decisions
Evaluation Process
- Extract Tool Calls: Identifies tools mentioned in agent output
- Analyze Appropriateness: Evaluates each tool against user request
- Generate Score: Calculates score based on appropriate vs total tool calls
- Generate Reasoning: Provides human-readable explanation
LLM-Based Scoring Details
- Fractional scores: Returns values between 0.0 and 1.0
- Context-aware: Considers user intent and appropriateness
- Explanatory: Provides reasoning for scores
LLM-Based Scorer Options
// Basic configuration
const basicLLMScorer = createLLMScorer({
model: 'openai/gpt-4o-mini',
availableTools: [
{ name: 'tool1', description: 'Description 1' },
{ name: 'tool2', description: 'Description 2' }
]
});
// With different model
const customModelScorer = createLLMScorer({
model: openai('gpt-4'), // More powerful model for complex evaluations
availableTools: [...]
});
LLM-Based Scorer Results
{
runId: string,
score: number, // 0.0 to 1.0
reason: string, // Human-readable explanation
analyzeStepResult: {
evaluations: Array<{
toolCalled: string,
wasAppropriate: boolean,
reasoning: string
}>,
missingTools?: string[]
}
}
LLM-Based Scorer Examples
The LLM-based scorer uses AI to evaluate whether tool selections are appropriate for the user's request.
Basic LLM evaluation
const llmScorer = createToolCallAccuracyScorerLLM({
model: "openai/gpt-4o-mini",
availableTools: [
{
name: "weather-tool",
description: "Get current weather information for any location",
},
{
name: "calendar-tool",
description: "Check calendar events and scheduling",
},
{
name: "search-tool",
description: "Search the web for general information",
},
],
});
const inputMessages = [
createUIMessage({
content: "What is the weather like in San Francisco today?",
role: "user",
id: "input-1",
}),
];
const output = [
createUIMessage({
content: "Let me check the current weather for you.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-123",
toolName: "weather-tool",
args: { location: "San Francisco", date: "today" },
result: { temperature: "68°F", condition: "foggy" },
state: "result",
}),
],
}),
];
const run = createAgentTestRun({ inputMessages, output });
const result = await llmScorer.run(run);
console.log(result.score); // 1.0 - appropriate tool usage
console.log(result.reason); // "The agent correctly used the weather-tool to address the user's request for weather information."
Handling inappropriate tool usage
const inputMessages = [
createUIMessage({
content: "What is the weather in Tokyo?",
role: "user",
id: "input-1",
}),
];
const inappropriateOutput = [
createUIMessage({
content: "Let me search for that information.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-456",
toolName: "search-tool", // Less appropriate than weather-tool
args: { query: "Tokyo weather" },
result: { results: ["Tokyo weather data..."] },
state: "result",
}),
],
}),
];
const run = createAgentTestRun({ inputMessages, output: inappropriateOutput });
const result = await llmScorer.run(run);
console.log(result.score); // 0.5 - partially appropriate
console.log(result.reason); // "The agent used search-tool when weather-tool would have been more appropriate for a direct weather query."
Evaluating clarification requests
The LLM scorer recognizes when agents appropriately ask for clarification:
const vagueInput = [
createUIMessage({
content: 'I need help with something',
role: 'user',
id: 'input-1'
})
];
const clarificationOutput = [
createUIMessage({
content: 'I'd be happy to help! Could you please provide more details about what you need assistance with?',
role: 'assistant',
id: 'output-1',
// No tools called - asking for clarification instead
})
];
const run = createAgentTestRun({
inputMessages: vagueInput,
output: clarificationOutput
});
const result = await llmScorer.run(run);
console.log(result.score); // 1.0 - appropriate to ask for clarification
console.log(result.reason); // "The agent appropriately asked for clarification rather than calling tools with insufficient information."
Comparing Both Scorers
Here's an example using both scorers on the same data:
import { createToolCallAccuracyScorerCode as createCodeScorer } from "@mastra/evals/scorers/code";
import { createToolCallAccuracyScorerLLM as createLLMScorer } from "@mastra/evals/scorers/llm";
// Setup both scorers
const codeScorer = createCodeScorer({
expectedTool: "weather-tool",
strictMode: false,
});
const llmScorer = createLLMScorer({
model: "openai/gpt-4o-mini",
availableTools: [
{ name: "weather-tool", description: "Get weather information" },
{ name: "search-tool", description: "Search the web" },
],
});
// Test data
const run = createAgentTestRun({
inputMessages: [
createUIMessage({
content: "What is the weather?",
role: "user",
id: "input-1",
}),
],
output: [
createUIMessage({
content: "Let me find that information.",
role: "assistant",
id: "output-1",
toolInvocations: [
createToolInvocation({
toolCallId: "call-1",
toolName: "search-tool",
args: { query: "weather" },
result: { results: ["weather data"] },
state: "result",
}),
],
}),
],
});
// Run both scorers
const codeResult = await codeScorer.run(run);
const llmResult = await llmScorer.run(run);
console.log("Code Scorer:", codeResult.score); // 0 - wrong tool
console.log("LLM Scorer:", llmResult.score); // 0.3 - partially appropriate
console.log("LLM Reason:", llmResult.reason); // Explains why search-tool is less appropriate