Skip to main content

Integrate Mastra in your Next.js project

In this guide, you'll build a tool-calling AI agent using Mastra, then connect it to Next.js by importing and calling the agent directly from your routes.

You'll use AI SDK UI and AI Elements to create a beautiful, interactive chat experience.

Screenshot of a chat-style web app displaying a completed "weatherTool" tool call, answering "What is the weather in London?" with a JSON result. A message suggests offering activity ideas, and a text input field is at the bottom.

What you'll build: an agent that can call a weather tool, display the JSON result, stream a weather summary in the chat UI, and persist conversation history across reloads.

Before you begin
Direct link to Before you begin

  • You'll need an API key from a supported model provider. If you don't have a preference, use OpenAI.
  • Install Node.js v22.13.0 or later

Create a new Next.js app (optional)
Direct link to Create a new Next.js app (optional)

If you already have a Next.js app, skip to the next step.

Run the following command to create a new Next.js app:

npx create-next-app@latest my-nextjs-agent --yes --ts --eslint --tailwind --src-dir --app --turbopack --no-react-compiler --no-import-alias

This creates a project called my-nextjs-agent, but you can replace it with any name you want.

Initialize Mastra
Direct link to Initialize Mastra

cd into your Next.js project and run mastra init.

When prompted, choose a provider (e.g. OpenAI) and enter your key:

cd my-nextjs-agent
npx --force mastra@beta init

This creates a src/mastra folder with an example weather agent and the following files:

  • index.ts - Mastra config, including memory
  • tools/weather-tool.ts - a tool to fetch weather for a given location
  • agents/weather-agent.ts- a weather agent with a prompt that uses the tool

You'll call weather-agent.ts from your Next.js routes in the next steps.

Install AI SDK UI & AI Elements
Direct link to Install AI SDK UI & AI Elements

Install AI SDK UI along with the Mastra adapter:

npm install @mastra/ai-sdk@beta @ai-sdk/react ai

Next, initialize AI Elements. When prompted, choose the default options:

npx ai-elements@latest

This downloads the entire AI Elements UI component library into a @/components/ai-elements folder.

Create a chat route
Direct link to Create a chat route

Create src/app/api/chat/route.ts:

src/app/api/chat/route.ts
import { handleChatStream } from '@mastra/ai-sdk';
import { toAISdkV5Messages } from '@mastra/ai-sdk/ui'
import { createUIMessageStreamResponse } from 'ai';
import { mastra } from '@/mastra';
import { NextResponse } from 'next/server';

const THREAD_ID = 'example-user-id';
const RESOURCE_ID = 'weather-chat';

export async function POST(req: Request) {
const params = await req.json();
const stream = await handleChatStream({
mastra,
agentId: 'weatherAgent',
params: {
...params,
memory: {
...params.memory,
thread: THREAD_ID,
resource: RESOURCE_ID,
}
},
});
return createUIMessageStreamResponse({ stream });
}

export async function GET() {
const memory = await mastra.getAgent('weatherAgent').getMemory()
let response = null

try {
response = await memory?.recall({
threadId: THREAD_ID,
resourceId: RESOURCE_ID,
})
} catch {
console.log('No previous messages found.')
}

const uiMessages = toAISdkV5Messages(response?.messages || []);

return NextResponse.json(uiMessages)
}

The POST route accepts a prompt and streams the agent's response back in AI SDK format, while the GET route fetches message history from memory so the UI can be hydrated when the client reloads.

Create a chat page
Direct link to Create a chat page

Create src/app/chat/page.tsx:

src/app/chat/page.tsx
'use client';

import '@/app/globals.css';
import { useEffect, useState } from 'react';
import { DefaultChatTransport, ToolUIPart } from 'ai';
import { useChat } from '@ai-sdk/react';

import {
PromptInput,
PromptInputBody,
PromptInputTextarea,
} from '@/components/ai-elements/prompt-input';

import {
Conversation,
ConversationContent,
ConversationScrollButton,
} from '@/components/ai-elements/conversation';

import { Message, MessageContent, MessageResponse } from '@/components/ai-elements/message';

import {
Tool,
ToolHeader,
ToolContent,
ToolInput,
ToolOutput,
} from '@/components/ai-elements/tool';


function Chat() {
const [input, setInput] = useState<string>('');

const { messages, setMessages, sendMessage, status } = useChat({
transport: new DefaultChatTransport({
api: '/api/chat',
}),
});

useEffect(() => {
const fetchMessages = async () => {
const res = await fetch('/api/chat');
const data = await res.json();
setMessages([...data]);
};
fetchMessages();
}, [setMessages]);

const handleSubmit = async () => {
if (!input.trim()) return;

sendMessage({ text: input });
setInput('');
};

return (
<div className="w-full p-6 relative size-full h-screen">
<div className="flex flex-col h-full">
<Conversation className="h-full">
<ConversationContent>
{messages.map((message) => (
<div key={message.id}>
{message.parts?.map((part, i) => {
if (part.type === 'text') {
return (
<Message
key={`${message.id}-${i}`}
from={message.role}>
<MessageContent>
<MessageResponse>{part.text}</MessageResponse>
</MessageContent>
</Message>
);
}

if (part.type?.startsWith('tool-')) {
return (
<Tool key={`${message.id}-${i}`}>
<ToolHeader
type={(part as ToolUIPart).type}
state={(part as ToolUIPart).state || 'output-available'}
className="cursor-pointer"
/>
<ToolContent>
<ToolInput input={(part as ToolUIPart).input || {}} />
<ToolOutput
output={(part as ToolUIPart).output}
errorText={(part as ToolUIPart).errorText}
/>
</ToolContent>
</Tool>
);
}

return null;
})}
</div>
))}
<ConversationScrollButton />
</ConversationContent>
</Conversation>

<PromptInput onSubmit={handleSubmit} className="mt-20">
<PromptInputBody>
<PromptInputTextarea
onChange={(e) => setInput(e.target.value)}
className="md:leading-10"
value={input}
placeholder="Type your message..."
disabled={status !== 'ready'}
/>
</PromptInputBody>
</PromptInput>
</div>
</div>
);
}

export default Chat;

This component connects useChat() to the api/chat endpoint, sending prompts there and streaming the response back in chunks.

It renders the response text using the <MessageResponse> component, and shows any tool invocations with the <Tool> component.

Test your agent
Direct link to Test your agent

  1. Run your Next.js app with npm run dev
  2. Open the chat at http://localhost:3000/chat
  3. Try asking about the weather. If your API key is set up correctly, you'll get a response

Next steps
Direct link to Next steps

Congratulations on building your Mastra agent with Next.js! 🎉

From here, you can extend the project with your own tools and logic:

  • Learn more about agents
  • Give your agent its own tools
  • Add human-like memory to your agent

When you're ready, read more about how Mastra integrates with AI SDK UI and Next.js, and how to deploy your agent anywhere, including Vercel: