Skip to main content
Mastra 1.0 is available 🎉 Read announcement

Integrate Mastra in your Electron project

In this guide, you'll build a tool-calling AI agent using Mastra, then connect it to an Electron desktop app by calling the agent directly from Mastra's server.

You'll use AI SDK UI to create a beautiful, interactive chat experience.

Before you begin
Direct link to Before you begin

  • You'll need an API key from a supported model provider. If you don't have a preference, use OpenAI.
  • Install Node.js v22.13.0 or later

Create a new Electron app (optional)
Direct link to Create a new Electron app (optional)

If you already have an Electron app, skip to the next step.

Scaffold a new Electron app using electron-vite:

npm create @quick-start/electron@latest electron-chat -- --template react-ts --skip

This creates a new Electron app called electron-chat with React and TypeScript. Navigate into the project directory:

cd electron-chat

Edit CSP settings
Direct link to Edit CSP settings

In order for the Electron app to call the Mastra server, you need to adjust the Content Security Policy (CSP) settings.

Open src/renderer/index.html and update the <meta http-equiv="Content-Security-Policy"> tag to include http://localhost:4111 in the connect-src directive:

src/renderer/index.html
<meta
http-equiv="Content-Security-Policy"
content="default-src 'self'; connect-src http://localhost:4111; script-src 'self'; style-src 'self' 'unsafe-inline'; img-src 'self' data:"
/>
info

For production deployments you'll need to adjust this to match your actual server URL.

Edit main.css
Direct link to edit-maincss

Open src/renderer/src/assets/main.css and change its contents to:

src/renderer/src/assets/main.css
@import './base.css';

body {
background: var(--ev-c-white);
color: var(--ev-c-black);
}

Initialize Mastra
Direct link to Initialize Mastra

Run mastra init. When prompted, choose a provider (e.g. OpenAI) and enter your key:

npx mastra@latest init

This creates a src/mastra folder with an example weather agent and the following files:

  • index.ts - Mastra config, including memory
  • tools/weather-tool.ts - a tool to fetch weather for a given location
  • agents/weather-agent.ts- a weather agent with a prompt that uses the tool

You'll call weather-agent.ts from your chat UI in the next steps.

Install AI SDK UI & AI Elements
Direct link to Install AI SDK UI & AI Elements

Install AI SDK UI along with the Mastra adapter:

npm install @mastra/ai-sdk@latest @ai-sdk/react ai

Create a chat route
Direct link to Create a chat route

Open src/mastra/index.ts and add a chatRoute() to your config. This creates an API route your Electron frontend can call for AI SDK-compatible chat responses, which you'll use with useChat() next.

src/mastra/index.ts
import { Mastra } from '@mastra/core/mastra';
// Existing imports...
import { chatRoute } from "@mastra/ai-sdk"

export const mastra = new Mastra({
// Existing config...
server: {
cors: {
origin: "*", // Restrict this to your app's origin in production
allowMethods: ["*"],
allowHeaders: ["*"],
},
apiRoutes: [
chatRoute({
path: '/chat/:agentId'
})
]
}
});
info

CORS is required because the Electron renderer loads from a different origin than the Mastra server. For production deployments, restrict the origin to your application's actual origin.

Add the chat UI
Direct link to Add the chat UI

Open src/renderer/src/App.tsx and replace its contents with the chat component:

src/renderer/src/App.tsx
import { useState } from 'react'
import { useChat } from '@ai-sdk/react'
import { DefaultChatTransport, type ToolUIPart } from 'ai'

const STATE_TO_LABEL_MAP: Record<string, string> = {
'input-streaming': 'Streaming input...',
'input-available': 'Input ready',
'approval-requested': 'Approval requested',
'approval-responded': 'Approval responded',
'output-available': 'Complete',
'output-error': 'Error'
}

export default function App(): React.JSX.Element {
const [input, setInput] = useState('')

const { messages, sendMessage } = useChat({
transport: new DefaultChatTransport({
api: `http://localhost:4111/chat/weather-agent`
})
})

const handleSubmit = (e: React.FormEvent<HTMLFormElement>): void => {
e.preventDefault()
if (!input.trim()) return
sendMessage({ text: input })
setInput('')
}

return (
<main
style={{
maxWidth: '48rem',
marginLeft: 'auto',
marginRight: 'auto',
padding: '1.5rem',
width: '100%',
height: '100vh'
}}
>
<div style={{ display: 'flex', flexDirection: 'column', height: '100%' }}>
<div style={{ flex: '1 1 0%', minHeight: 0, overflowY: 'auto' }} data-name="conversation">
<div
data-name="conversation-content"
style={{ display: 'flex', flexDirection: 'column', gap: '2rem' }}
>
{messages.map((message, messageIndex) => (
<div key={messageIndex}>
{message.parts.map((part, partIndex) => {
if (part.type === 'text') {
return (
<div
key={partIndex}
data-name="message"
style={{
display: 'flex',
width: '100%',
maxWidth: '95%',
flexDirection: 'column',
gap: '0.5rem',
...(message.role === 'user'
? { marginLeft: 'auto', justifyContent: 'flex-end' }
: {})
}}
>
<div
data-name="message-content"
style={{
display: 'flex',
width: 'fit-content',
maxWidth: '100%',
minWidth: 0,
flexDirection: 'column',
gap: '0.5rem',
overflow: 'hidden',
fontSize: '0.875rem',
...(message.role === 'user'
? {
marginLeft: 'auto',
borderRadius: '0.5rem',
backgroundColor: '#dbeafe',
paddingLeft: '1rem',
paddingRight: '1rem',
paddingTop: '0.75rem',
paddingBottom: '0.75rem'
}
: {})
}}
>
<div
data-name="message-response"
style={{ width: '100%', height: '100%' }}
>
{part.text}
</div>
</div>
</div>
)
}
if (part.type.startsWith('tool-')) {
const toolPart = part as unknown as ToolUIPart
return (
<div
key={partIndex}
data-name="tool"
style={{
marginBottom: '1.5rem',
width: '100%',
borderRadius: '0.5rem',
border: '1px solid #d1d5db',
boxShadow: '0 1px 3px 0 rgba(0,0,0,0.1)'
}}
>
<details
data-name="tool-header"
style={{ width: '100%', padding: '0.75rem', cursor: 'pointer' }}
>
<summary style={{ fontWeight: 500, fontSize: '0.875rem' }}>
{toolPart.type.split('-').slice(1).join('-')} -{' '}
{STATE_TO_LABEL_MAP[toolPart.state ?? 'output-available']}
</summary>
<div data-name="tool-content">
<div
data-name="tool-input"
style={{
overflow: 'hidden',
paddingTop: '1rem',
paddingBottom: '1rem'
}}
>
<div
style={{
fontWeight: 500,
color: '#6b7280',
fontSize: '0.75rem',
textTransform: 'uppercase',
letterSpacing: '0.05em'
}}
>
Parameters
</div>
<pre
style={{
width: '100%',
overflowX: 'auto',
borderRadius: '0.375rem',
border: '1px solid #d1d5db',
backgroundColor: '#f9fafb',
padding: '0.75rem',
fontSize: '0.875rem'
}}
>
<code>{JSON.stringify(toolPart.input, null, 2)}</code>
</pre>
</div>
<div
data-name="tool-output"
style={{
overflow: 'hidden',
paddingTop: '1rem',
paddingBottom: '1rem'
}}
>
<div
style={{
fontWeight: 500,
color: '#6b7280',
fontSize: '0.75rem',
textTransform: 'uppercase',
letterSpacing: '0.05em'
}}
>
{toolPart.errorText ? 'Error' : 'Result'}
</div>
<pre
style={{
width: '100%',
overflowX: 'auto',
borderRadius: '0.375rem',
border: '1px solid #d1d5db',
backgroundColor: '#f9fafb',
padding: '0.75rem',
fontSize: '0.875rem'
}}
>
<code>{JSON.stringify(toolPart.output, null, 2)}</code>
</pre>
{toolPart.errorText && (
<div data-name="tool-error" style={{ color: '#dc2626' }}>
{toolPart.errorText}
</div>
)}
</div>
</div>
</details>
</div>
)
}
return null
})}
</div>
))}
</div>
</div>
<form
style={{
width: '100%',
display: 'grid',
gridTemplateColumns: '1fr auto',
gap: '1.5rem',
flexShrink: 0,
paddingTop: '1rem'
}}
onSubmit={handleSubmit}
data-name="prompt-input"
>
<input
name="chat-input"
style={{
borderRadius: '0.5rem',
border: '1px solid #d1d5db',
boxShadow: '0 1px 2px 0 rgba(0,0,0,0.05)',
height: '2.5rem',
padding: '0 0.75rem'
}}
placeholder="City name"
value={input}
onChange={(e) => setInput(e.target.value)}
/>
<button
style={{
backgroundColor: '#2563eb',
color: 'white',
boxShadow: '0 10px 15px -3px rgba(0,0,0,0.1)',
border: '1px solid #60a5fa',
paddingLeft: '1rem',
paddingRight: '1rem',
whiteSpace: 'nowrap',
borderRadius: '0.5rem',
fontSize: '0.875rem',
fontWeight: 500,
transition: 'all',
flexShrink: 0,
outline: 'none'
}}
type="submit"
>
Send
</button>
</form>
</div>
</main>
)
}

This connects useChat() to the /chat/weather-agent endpoint, sending propmts there and streaming the response back in chunks.

Test your agent
Direct link to Test your agent

In order to test your agent with the chat interface, you need to run both the Mastra server and the Electron app.

  1. Start the mastra development server:

    npx mastra dev
  2. In a separate terminal, start the Electron app:

    npm run dev
  3. An Electron window opens with the chat interface

  4. Try asking about the weather. If your API key is set up correctly, you'll get a response

Next steps
Direct link to Next steps

Congratulations on building your Mastra agent with Electron! 🎉

From here, you can extend the project with your own tools and logic:

  • Learn more about agents
  • Give your agent its own tools
  • Add human-like memory to your agent

When you're ready, read more about how Mastra integrates with AI SDK UI and React, and how to deploy your agent anywhere: