Skip to Content

Parallel Execution with Steps

When building AI applications, you often need to process multiple independent tasks simultaneously to improve efficiency.

Control Flow Diagram

This example shows how to structure a workflow that executes steps in parallel, with each branch handling its own data flow and dependencies.

Here’s the control flow diagram:

Diagram showing workflow with parallel steps

Creating the Steps

Let’s start by creating the steps and initializing the workflow.

import { LegacyStep, LegacyWorkflow } from "@mastra/core/workflows/legacy"; import { z } from "zod"; const stepOne = new LegacyStep({ id: "stepOne", execute: async ({ context }) => ({ doubledValue: context.triggerData.inputValue * 2, }), }); const stepTwo = new LegacyStep({ id: "stepTwo", execute: async ({ context }) => { if (context.steps.stepOne.status !== "success") { return { incrementedValue: 0 }; } return { incrementedValue: context.steps.stepOne.output.doubledValue + 1 }; }, }); const stepThree = new LegacyStep({ id: "stepThree", execute: async ({ context }) => ({ tripledValue: context.triggerData.inputValue * 3, }), }); const stepFour = new LegacyStep({ id: "stepFour", execute: async ({ context }) => { if (context.steps.stepThree.status !== "success") { return { isEven: false }; } return { isEven: context.steps.stepThree.output.tripledValue % 2 === 0 }; }, }); const myWorkflow = new LegacyWorkflow({ name: "my-workflow", triggerSchema: z.object({ inputValue: z.number(), }), });

Chaining and Parallelizing Steps

Now we can add the steps to the workflow. Note the .then() method is used to chain the steps, but the .step() method is used to add the steps to the workflow.

myWorkflow .step(stepOne) .then(stepTwo) // chain one .step(stepThree) .then(stepFour) // chain two .commit(); const { start } = myWorkflow.createRun(); const result = await start({ triggerData: { inputValue: 3 } });





View Example on GitHub