Skip to main content

LanguageDetector

The LanguageDetector is an input processor that identifies the language of input text and optionally translates it to a target language for consistent processing. This processor helps maintain language consistency by detecting the language of incoming messages and providing flexible strategies for handling multilingual content, including automatic translation to ensure all content is processed in the target language.

Usage example

import { openai } from "@ai-sdk/openai";
import { LanguageDetector } from "@mastra/core/processors";

const processor = new LanguageDetector({
model: openai("gpt-4.1-nano"),
targetLanguages: ["English", "en"],
threshold: 0.8,
strategy: "translate",
});

Constructor parameters

options:

Options
Configuration options for language detection and translation

Options

model:

MastraLanguageModel
Model configuration for the detection/translation agent

targetLanguages?:

string[]
Target language(s) for the project. If content is detected in a different language, it may be translated. Can be language name ('English') or ISO code ('en')

threshold?:

number
Confidence threshold for language detection (0-1). Only process when detection confidence exceeds this threshold

strategy?:

'detect' | 'translate' | 'block' | 'warn'
Strategy when non-target language is detected: 'detect' only detects language, 'translate' automatically translates to target language, 'block' rejects content not in target language, 'warn' logs warning but allows through

preserveOriginal?:

boolean
Whether to preserve original content in message metadata. Useful for audit trails and debugging

instructions?:

string
Custom detection instructions for the agent. If not provided, uses default instructions

minTextLength?:

number
Minimum text length to perform detection. Short text is often unreliable for language detection

includeDetectionDetails?:

boolean
Whether to include detailed detection info in logs

translationQuality?:

'speed' | 'quality' | 'balanced'
Translation quality preference: 'speed' prioritizes fast translation, 'quality' prioritizes accuracy, 'balanced' balances between speed and quality

Returns

name:

string
Processor name set to 'language-detector'

processInput:

(args: { messages: MastraMessageV2[]; abort: (reason?: string) => never; tracingContext?: TracingContext }) => Promise<MastraMessageV2[]>
Processes input messages to detect language and optionally translate content before sending to LLM

Extended usage example

import { openai } from "@ai-sdk/openai";
import { Agent } from "@mastra/core/agent";
import { LanguageDetector } from "@mastra/core/processors";

export const agent = new Agent({
name: "multilingual-agent",
instructions: "You are a helpful assistant",
model: openai("gpt-4o-mini"),
inputProcessors: [
new LanguageDetector({
model: openai("gpt-4.1-nano"),
targetLanguages: ["English", "en"],
threshold: 0.8,
strategy: "translate",
preserveOriginal: true,
instructions:
"Detect language and translate non-English content to English while preserving original intent",
minTextLength: 10,
includeDetectionDetails: true,
translationQuality: "quality",
}),
],
});