Skip to main content

Control Flow

Workflows run a sequence of predefined tasks, and you can control how that flow is executed. Tasks are divided into steps, which can be executed in different ways depending on your requirements. They can run sequentially, in parallel, or follow different paths based on conditions.

Each step connects to the next in the workflow through defined schemas that keep data controlled and consistent.

Core principles
Direct link to Core principles

  • The first step’s inputSchema must match the workflow’s inputSchema.
  • The final step’s outputSchema must match the workflow’s outputSchema.
  • Each step’s outputSchema must match the next step’s inputSchema.

Chaining steps with .then()
Direct link to chaining-steps-with-then

Use .then() to run steps in order, allowing each step to access the result of the step before it.

Chaining steps with .then()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({
//...
inputSchema: z.object({
message: z.string()
}),
outputSchema: z.object({
formatted: z.string()
})
});

const step2 = createStep({
// ...
inputSchema: z.object({
formatted: z.string()
}),
outputSchema: z.object({
emphasized: z.string()
})
});

export const testWorkflow = createWorkflow({
// ...
inputSchema: z.object({
message: z.string()
}),
outputSchema: z.object({
emphasized: z.string()
})
})
.then(step1)
.then(step2)
.commit();

Simultaneous steps with .parallel()
Direct link to simultaneous-steps-with-parallel

Use .parallel() to run steps at the same time. All parallel steps must complete before the workflow continues to the next step. Each step's id is used when defining a following step's inputSchema and becomes the key on the inputData object used to access the previous step's values. The outputs of parallel steps can then be referenced or combined by a following step.

Concurrent steps with .parallel()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({
id: "step-1",
// ...
});

const step2 = createStep({
id: "step-2",
// ...
});

const step3 = createStep({
id: "step-3",
inputSchema: z.object({
"step-1": z.object({
formatted: z.string()
}),
"step-2": z.object({
emphasized: z.string()
})
}),
outputSchema: z.object({
combined: z.string()
}),
execute: async ({ inputData }) => {
const { formatted } = inputData["step-1"];
const { emphasized } = inputData["step-2"];
return {
combined: `${formatted} | ${emphasized}`
};
}
});

export const testWorkflow = createWorkflow({
// ...
inputSchema: z.object({
message: z.string()
}),
outputSchema: z.object({
combined: z.string()
})
})
.parallel([step1, step2])
.then(step3)
.commit();

📹 Watch: How to run steps in parallel and optimize your Mastra workflow → YouTube (3 minutes)

Output structure
Direct link to Output structure

When steps run in parallel, the output is an object where each key is the step's id and the value is that step's output. This allows you to access each parallel step's result independently.

src/mastra/workflows/test-workflow.ts
const step1 = createStep({
id: "format-step",
inputSchema: z.object({ message: z.string() }),
outputSchema: z.object({ formatted: z.string() }),
execute: async ({ inputData }) => ({
formatted: inputData.message.toUpperCase()
})
});

const step2 = createStep({
id: "count-step",
inputSchema: z.object({ message: z.string() }),
outputSchema: z.object({ count: z.number() }),
execute: async ({ inputData }) => ({
count: inputData.message.length
})
});

const step3 = createStep({
id: "combine-step",
// The inputSchema must match the structure of parallel outputs
inputSchema: z.object({
"format-step": z.object({ formatted: z.string() }),
"count-step": z.object({ count: z.number() })
}),
outputSchema: z.object({ result: z.string() }),
execute: async ({ inputData }) => {
// Access each parallel step's output by its id
const formatted = inputData["format-step"].formatted;
const count = inputData["count-step"].count;
return {
result: `${formatted} (${count} characters)`
};
}
});

export const testWorkflow = createWorkflow({
id: "parallel-output-example",
inputSchema: z.object({ message: z.string() }),
outputSchema: z.object({ result: z.string() })
})
.parallel([step1, step2])
.then(step3)
.commit();

// When executed with { message: "hello" }
// The parallel output structure will be:
// {
// "format-step": { formatted: "HELLO" },
// "count-step": { count: 5 }
// }

Key points:

  • Each parallel step's output is keyed by its id
  • All parallel steps execute simultaneously
  • The next step receives an object containing all parallel step outputs
  • You must define the inputSchema of the following step to match this structure

See Choosing the right pattern to understand when to use .parallel() vs .foreach().

Conditional logic with .branch()
Direct link to conditional-logic-with-branch

Use .branch() to choose which step to run based on a condition. All steps in a branch need the same inputSchema and outputSchema because branching requires consistent schemas so workflows can follow different paths.

Conditional branching with .branch()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({...})

const stepA = createStep({
// ...
inputSchema: z.object({
value: z.number()
}),
outputSchema: z.object({
result: z.string()
})
});

const stepB = createStep({
// ...
inputSchema: z.object({
value: z.number()
}),
outputSchema: z.object({
result: z.string()
})
});

export const testWorkflow = createWorkflow({
// ...
inputSchema: z.object({
value: z.number()
}),
outputSchema: z.object({
result: z.string()
})
})
.then(step1)
.branch([
[async ({ inputData: { value } }) => value > 10, stepA],
[async ({ inputData: { value } }) => value <= 10, stepB]
])
.commit();

Output structure
Direct link to Output structure

When using conditional branching, only one branch executes based on which condition evaluates to true first. The output structure is similar to .parallel(), where the result is keyed by the executed step's id.

src/mastra/workflows/test-workflow.ts
const step1 = createStep({
id: "initial-step",
inputSchema: z.object({ value: z.number() }),
outputSchema: z.object({ value: z.number() }),
execute: async ({ inputData }) => inputData
});

const highValueStep = createStep({
id: "high-value-step",
inputSchema: z.object({ value: z.number() }),
outputSchema: z.object({ result: z.string() }),
execute: async ({ inputData }) => ({
result: `High value: ${inputData.value}`
})
});

const lowValueStep = createStep({
id: "low-value-step",
inputSchema: z.object({ value: z.number() }),
outputSchema: z.object({ result: z.string() }),
execute: async ({ inputData }) => ({
result: `Low value: ${inputData.value}`
})
});

const finalStep = createStep({
id: "final-step",
// The inputSchema must account for either branch's output
inputSchema: z.object({
"high-value-step": z.object({ result: z.string() }).optional(),
"low-value-step": z.object({ result: z.string() }).optional()
}),
outputSchema: z.object({ message: z.string() }),
execute: async ({ inputData }) => {
// Only one branch will have executed
const result = inputData["high-value-step"]?.result ||
inputData["low-value-step"]?.result;
return { message: result };
}
});

export const testWorkflow = createWorkflow({
id: "branch-output-example",
inputSchema: z.object({ value: z.number() }),
outputSchema: z.object({ message: z.string() })
})
.then(step1)
.branch([
[async ({ inputData }) => inputData.value > 10, highValueStep],
[async ({ inputData }) => inputData.value <= 10, lowValueStep]
])
.then(finalStep)
.commit();

// When executed with { value: 15 }
// Only the high-value-step executes, output structure:
// {
// "high-value-step": { result: "High value: 15" }
// }

// When executed with { value: 5 }
// Only the low-value-step executes, output structure:
// {
// "low-value-step": { result: "Low value: 5" }
// }

Key points:

  • Only one branch executes based on condition evaluation order
  • The output is keyed by the executed step's id
  • Subsequent steps should handle all possible branch outputs
  • Use optional fields in the inputSchema when the next step needs to handle multiple possible branches
  • Conditions are evaluated in the order they're defined

Input data mapping
Direct link to Input data mapping

When using .then(), .parallel(), or .branch(), it is sometimes necessary to transform the output of a previous step to match the input of the next. In these cases you can use .map() to access the inputData and transform it to create a suitable data shape for the next step.

Mapping with .map()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({...});
const step2 = createStep({...});

export const testWorkflow = createWorkflow({...})
.then(step1)
.map(async ({ inputData }) => {
const { foo } = inputData;
return {
bar: `new ${foo}`,
};
})
.then(step2)
.commit();

The .map() method provides additional helper functions for more complex mapping scenarios.

Available helper functions:

Parallel and Branch outputs
Direct link to Parallel and Branch outputs

When working with .parallel() or .branch() outputs, you can use .map() to transform the data structure before passing it to the next step. This is especially useful when you need to flatten or restructure the output.

src/mastra/workflows/test-workflow.ts
export const testWorkflow = createWorkflow({...})
.parallel([step1, step2])
.map(async ({ inputData }) => {
// Transform the parallel output structure
return {
combined: `${inputData["step1"].value} - ${inputData["step2"].value}`
};
})
.then(nextStep)
.commit();

You can also use the helper functions provided by .map():

src/mastra/workflows/test-workflow.ts
export const testWorkflow = createWorkflow({...})
.branch([
[condition1, stepA],
[condition2, stepB]
])
.map(async ({ inputData, getStepResult }) => {
// Access specific step results
const stepAResult = getStepResult("stepA");
const stepBResult = getStepResult("stepB");

// Return the result from whichever branch executed
return stepAResult || stepBResult;
})
.then(nextStep)
.commit();

Looping steps
Direct link to Looping steps

Workflows support different looping methods that let you repeat steps until or while a condition is met, or iterate over arrays. Loops can be combined with other control methods like .then().

Looping with .dountil()
Direct link to looping-with-dountil

Use .dountil() to run a step repeatedly until a condition becomes true.

Repeating with .dountil()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({...});

const step2 = createStep({
// ...
execute: async ({ inputData }) => {
const { number } = inputData;
return {
number: number + 1
};
}
});

export const testWorkflow = createWorkflow({
// ...
})
.then(step1)
.dountil(step2, async ({ inputData: { number } }) => number > 10)
.commit();

Looping with .dowhile()
Direct link to looping-with-dowhile

Use .dowhile() to run a step repeatedly while a condition remains true.

Repeating with .dowhile()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({...});

const step2 = createStep({
// ...
execute: async ({ inputData }) => {
const { number } = inputData;
return {
number: number + 1
};
}
});

export const testWorkflow = createWorkflow({
// ...
})
.then(step1)
.dowhile(step2, async ({ inputData: { number } }) => number < 10)
.commit();

Looping with .foreach()
Direct link to looping-with-foreach

Use .foreach() to run the same step for each item in an array. The input must be of type array so the loop can iterate over its values, applying the step's logic to each one. See Choosing the right pattern for guidance on when to use .foreach() vs other methods.

Repeating with .foreach()

src/mastra/workflows/test-workflow.ts
const step1 = createStep({
// ...
inputSchema: z.string(),
outputSchema: z.string(),
execute: async ({ inputData }) => {
return inputData.toUpperCase();
}
});

const step2 = createStep({...});

export const testWorkflow = createWorkflow({
// ...
inputSchema: z.array(z.string()),
outputSchema: z.array(z.string())
})
.foreach(step1)
.then(step2)
.commit();

Output structure
Direct link to Output structure

The .foreach() method always returns an array containing the output of each iteration. The order of outputs matches the order of inputs.

src/mastra/workflows/test-workflow.ts
const addTenStep = createStep({
id: "add-ten",
inputSchema: z.object({ value: z.number() }),
outputSchema: z.object({ value: z.number() }),
execute: async ({ inputData }) => ({
value: inputData.value + 10
})
});

export const testWorkflow = createWorkflow({
id: "foreach-output-example",
inputSchema: z.array(z.object({ value: z.number() })),
outputSchema: z.array(z.object({ value: z.number() }))
})
.foreach(addTenStep)
.commit();

// When executed with [{ value: 1 }, { value: 22 }, { value: 333 }]
// Output: [{ value: 11 }, { value: 32 }, { value: 343 }]

Concurrency limits
Direct link to Concurrency limits

Use concurrency to control the number of array items processed at the same time. The default is 1, which runs steps sequentially. Increasing the value allows .foreach() to process multiple items simultaneously.

src/mastra/workflows/test-workflow.ts
const step1 = createStep({...})

export const testWorkflow = createWorkflow({...})
.foreach(step1, { concurrency: 4 })
.commit();

Aggregating results after .foreach()
Direct link to aggregating-results-after-foreach

Since .foreach() outputs an array, you can use .then() or .map() to aggregate or transform the results. The step following .foreach() receives the entire array as its input.

src/mastra/workflows/test-workflow.ts
const processItemStep = createStep({
id: "process-item",
inputSchema: z.object({ value: z.number() }),
outputSchema: z.object({ processed: z.number() }),
execute: async ({ inputData }) => ({
processed: inputData.value * 2
})
});

const aggregateStep = createStep({
id: "aggregate",
// Input is an array of outputs from foreach
inputSchema: z.array(z.object({ processed: z.number() })),
outputSchema: z.object({ total: z.number() }),
execute: async ({ inputData }) => ({
// Sum all processed values
total: inputData.reduce((sum, item) => sum + item.processed, 0)
})
});

export const testWorkflow = createWorkflow({
id: "foreach-aggregate-example",
inputSchema: z.array(z.object({ value: z.number() })),
outputSchema: z.object({ total: z.number() })
})
.foreach(processItemStep)
.then(aggregateStep) // Receives the full array from foreach
.commit();

// When executed with [{ value: 1 }, { value: 2 }, { value: 3 }]
// After foreach: [{ processed: 2 }, { processed: 4 }, { processed: 6 }]
// After aggregate: { total: 12 }

You can also use .map() to transform the array output:

src/mastra/workflows/test-workflow.ts
export const testWorkflow = createWorkflow({...})
.foreach(processItemStep)
.map(async ({ inputData }) => ({
// Transform the array into a different structure
values: inputData.map(item => item.processed),
count: inputData.length
}))
.then(nextStep)
.commit();

Chaining multiple .foreach() calls
Direct link to chaining-multiple-foreach-calls

When you chain .foreach() calls, each operates on the array output of the previous step. This is useful when each item in your array needs to be transformed by multiple steps in sequence.

src/mastra/workflows/test-workflow.ts
const chunkStep = createStep({
id: "chunk",
// Takes a document, returns an array of chunks
inputSchema: z.object({ content: z.string() }),
outputSchema: z.array(z.object({ chunk: z.string() })),
execute: async ({ inputData }) => {
// Split document into chunks
const chunks = inputData.content.match(/.{1,100}/g) || [];
return chunks.map(chunk => ({ chunk }));
}
});

const embedStep = createStep({
id: "embed",
// Takes a single chunk, returns embedding
inputSchema: z.object({ chunk: z.string() }),
outputSchema: z.object({ embedding: z.array(z.number()) }),
execute: async ({ inputData }) => ({
embedding: [/* vector embedding */]
})
});

// For a single document that produces multiple chunks:
export const singleDocWorkflow = createWorkflow({
id: "single-doc-rag",
inputSchema: z.object({ content: z.string() }),
outputSchema: z.array(z.object({ embedding: z.array(z.number()) }))
})
.then(chunkStep) // Returns array of chunks
.foreach(embedStep) // Process each chunk -> array of embeddings
.commit();

For processing multiple documents where each produces multiple chunks, you have options:

Option 1: Process all documents in a single step with batching control

src/mastra/workflows/test-workflow.ts
const downloadAndChunkStep = createStep({
id: "download-and-chunk",
inputSchema: z.array(z.string()), // Array of URLs
outputSchema: z.array(z.object({ chunk: z.string(), source: z.string() })),
execute: async ({ inputData: urls }) => {
// Control batching/parallelization within the step
const allChunks = [];
for (const url of urls) {
const content = await fetch(url).then(r => r.text());
const chunks = content.match(/.{1,100}/g) || [];
allChunks.push(...chunks.map(chunk => ({ chunk, source: url })));
}
return allChunks;
}
});

export const multiDocWorkflow = createWorkflow({...})
.then(downloadAndChunkStep) // Returns flat array of all chunks
.foreach(embedStep, { concurrency: 10 }) // Embed each chunk in parallel
.commit();

Option 2: Use foreach for documents, aggregate chunks, then foreach for embeddings

src/mastra/workflows/test-workflow.ts
const downloadStep = createStep({
id: "download",
inputSchema: z.string(), // Single URL
outputSchema: z.object({ content: z.string(), source: z.string() }),
execute: async ({ inputData: url }) => ({
content: await fetch(url).then(r => r.text()),
source: url
})
});

const chunkDocStep = createStep({
id: "chunk-doc",
inputSchema: z.object({ content: z.string(), source: z.string() }),
outputSchema: z.array(z.object({ chunk: z.string(), source: z.string() })),
execute: async ({ inputData }) => {
const chunks = inputData.content.match(/.{1,100}/g) || [];
return chunks.map(chunk => ({ chunk, source: inputData.source }));
}
});

export const multiDocWorkflow = createWorkflow({
id: "multi-doc-rag",
inputSchema: z.array(z.string()), // Array of URLs
outputSchema: z.array(z.object({ embedding: z.array(z.number()) }))
})
.foreach(downloadStep, { concurrency: 5 }) // Download docs in parallel
.foreach(chunkDocStep) // Chunk each doc -> array of chunk arrays
.map(async ({ inputData }) => {
// Flatten nested arrays: [[chunks], [chunks]] -> [chunks]
return inputData.flat();
})
.foreach(embedStep, { concurrency: 10 }) // Embed all chunks
.commit();

Key points about chaining .foreach():

  • Each .foreach() operates on the array from the previous step
  • If a step inside .foreach() returns an array, the output becomes an array of arrays
  • Use .map() with .flat() to flatten nested arrays when needed
  • For complex RAG pipelines, Option 1 (handling batching in a single step) often provides better control

Nested workflows inside foreach
Direct link to Nested workflows inside foreach

The step after .foreach() only executes after all iterations complete. If you need to run multiple sequential operations per item, use a nested workflow instead of chaining multiple .foreach() calls. This keeps all operations for each item together and makes the data flow clearer.

src/mastra/workflows/test-workflow.ts
// Define a workflow that processes a single document
const processDocumentWorkflow = createWorkflow({
id: "process-document",
inputSchema: z.object({ url: z.string() }),
outputSchema: z.object({
embeddings: z.array(z.array(z.number())),
metadata: z.object({ url: z.string(), chunkCount: z.number() })
})
})
.then(downloadStep) // Download the document
.then(chunkStep) // Split into chunks
.then(embedChunksStep) // Embed all chunks for this document
.then(formatResultStep) // Format the final output
.commit();

// Use the nested workflow inside foreach
export const batchProcessWorkflow = createWorkflow({
id: "batch-process-documents",
inputSchema: z.array(z.object({ url: z.string() })),
outputSchema: z.array(z.object({
embeddings: z.array(z.array(z.number())),
metadata: z.object({ url: z.string(), chunkCount: z.number() })
}))
})
.foreach(processDocumentWorkflow, { concurrency: 3 })
.commit();

// Each document goes through all 4 steps before the next document starts (with concurrency: 1)
// With concurrency: 3, up to 3 documents process their full pipelines in parallel

Why use nested workflows:

  • Better parallelism: With concurrency: N, multiple items run their full pipelines simultaneously. Chained .foreach().foreach() processes all items through step 1, waits, then all through step 2 - nested workflows let each item progress independently
  • All steps for one item complete together before results are collected
  • Cleaner than multiple .foreach() calls which create nested arrays
  • Each nested workflow execution is independent with its own data flow
  • Easier to test and reuse the per-item logic separately

How it works:

  1. The parent workflow passes each array item to an instance of the nested workflow
  2. Each nested workflow runs its full step sequence for that item
  3. With concurrency > 1, multiple nested workflows execute in parallel
  4. The nested workflow's final output becomes one element in the result array
  5. After all nested workflows complete, the next step in the parent receives the full array

Choosing the right pattern
Direct link to Choosing the right pattern

Use this section as a reference for selecting the appropriate control flow method.

Quick reference
Direct link to Quick reference

MethodPurposeInputOutputConcurrency
.then(step)Sequential processingTUN/A (one at a time)
.parallel([a, b])Different operations on same inputT{ a: U, b: V }All run simultaneously
.foreach(step)Same operation on each array itemT[]U[]Configurable (default: 1)
.branch([...])Conditional path selectionT{ selectedStep: U }Only one branch runs

.parallel() vs .foreach()
Direct link to parallel-vs-foreach

Use .parallel() when you have one input that needs different processing:

// Same user data processed differently in parallel
workflow
.parallel([validateStep, enrichStep, scoreStep])
.then(combineResultsStep)

Use .foreach() when you have many inputs that need the same processing:

// Multiple URLs each processed the same way
workflow
.foreach(downloadStep, { concurrency: 5 })
.then(aggregateStep)

When to use nested workflows
Direct link to When to use nested workflows

Inside .foreach() - when each array item needs multiple sequential steps:

// Each document goes through a full pipeline
const processDocWorkflow = createWorkflow({...})
.then(downloadStep)
.then(parseStep)
.then(embedStep)
.commit();

workflow.foreach(processDocWorkflow, { concurrency: 3 })

This is cleaner than chaining .foreach().foreach(), which creates nested arrays.

Inside .parallel() - when a parallel branch needs its own multi-step pipeline:

const pipelineA = createWorkflow({...}).then(step1).then(step2).commit();
const pipelineB = createWorkflow({...}).then(step3).then(step4).commit();

workflow.parallel([pipelineA, pipelineB])

Chaining patterns
Direct link to Chaining patterns

PatternWhat happensCommon use case
.then().then()Sequential stepsSimple pipelines
.parallel().then()Run in parallel, then combineFan-out/fan-in
.foreach().then()Process all items, then aggregateMap-reduce
.foreach().foreach()Creates array of arraysAvoid - use nested workflow or .map() with .flat()
.foreach(workflow)Full pipeline per itemMulti-step processing per array item

Synchronization: when does the next step run?
Direct link to Synchronization: when does the next step run?

Both .parallel() and .foreach() are synchronization points. The next step in the workflow only executes after all parallel branches or all array iterations have completed.

workflow
.parallel([stepA, stepB, stepC]) // All 3 run simultaneously
.then(combineStep) // Waits for ALL 3 to finish before running
.commit();

workflow
.foreach(processStep, { concurrency: 5 }) // Up to 5 items process at once
.then(aggregateStep) // Waits for ALL items to finish before running
.commit();

This means:

  • .parallel() collects all branch outputs into an object, then passes it to the next step
  • .foreach() collects all iteration outputs into an array, then passes it to the next step
  • There is no way to "stream" results to the next step as they complete

Concurrency behavior
Direct link to Concurrency behavior

MethodBehavior
.then()Sequential - one step at a time
.parallel()All branches run simultaneously (no limit option)
.foreach()Controlled via { concurrency: N } - default is 1 (sequential)
Nested workflow in .foreach()Respects parent's concurrency setting

Performance tip: For I/O-bound operations in .foreach(), increase concurrency to process items in parallel:

// Process up to 10 items simultaneously
workflow.foreach(fetchDataStep, { concurrency: 10 })

Loop management
Direct link to Loop management

Loop conditions can be implemented in different ways depending on how you want the loop to end. Common patterns include checking values returned in inputData, setting a maximum number of iterations, or aborting execution when a limit is reached.

Aborting loops
Direct link to Aborting loops

Use iterationCount to limit how many times a loop runs. If the count exceeds your threshold, throw an error to fail the step and stop the workflow.

src/mastra/workflows/test-workflow.ts
const step1 = createStep({...});

export const testWorkflow = createWorkflow({...})
.dountil(step1, async ({ inputData: { userResponse, iterationCount } }) => {
if (iterationCount >= 10) {
throw new Error("Maximum iterations reached");
}
return userResponse === "yes";
})
.commit();