createGraphRAGTool()
The createGraphRAGTool()
creates a tool that enhances RAG by building a graph of semantic relationships between documents. It uses the GraphRAG
system under the hood to provide graph-based retrieval, finding relevant content through both direct similarity and connected relationships.
Usage Example
import { openai } from "@ai-sdk/openai";
import { createGraphRAGTool } from "@mastra/rag";
const graphTool = createGraphRAGTool({
vectorStoreName: "pinecone",
indexName: "docs",
model: openai.embedding('text-embedding-3-small'),
graphOptions: {
dimension: 1536,
threshold: 0.7,
randomWalkSteps: 100,
restartProb: 0.15
}
});
Parameters
vectorStoreName:
string
Name of the vector store to query
indexName:
string
Name of the index within the vector store
model:
EmbeddingModel
Embedding model to use for vector search
graphOptions?:
GraphOptions
= Default graph options
Configuration for the graph-based retrieval
GraphOptions
dimension?:
number
= 1536
Dimension of the embedding vectors
threshold?:
number
= 0.7
Similarity threshold for creating edges between nodes (0-1)
randomWalkSteps?:
number
= 100
Number of steps in random walk for graph traversal
restartProb?:
number
= 0.15
Probability of restarting random walk from query node
Returns
The tool returns an object with:
relevantContext:
string
Combined text from the most relevant document chunks, retrieved using graph-based ranking
Advanced Example
const graphTool = createGraphRAGTool({
vectorStoreName: "pinecone",
indexName: "docs",
model: openai.embedding('text-embedding-3-small'),
graphOptions: {
dimension: 1536,
threshold: 0.8, // Higher similarity threshold
randomWalkSteps: 200, // More exploration steps
restartProb: 0.2 // Higher restart probability
}
});