PgStore
The PgStore class provides vector search using PostgreSQL with pgvector extension.
Constructor Options
connectionString:
string
PostgreSQL connection URL
tableName?:
string
Table name for vector storage
dimension?:
number
Vector dimension (must match your embedding model)
Methods
createIndex()
indexName:
string
Name of the index to create
dimension:
number
Vector dimension size
metric?:
'cosine' | 'euclidean' | 'dotproduct'
Distance metric for similarity search
upsert()
vectors:
number[][]
Array of embedding vectors
metadata?:
Record<string, any>[]
Metadata for each vector
ids?:
string[]
Optional vector IDs (auto-generated if not provided)
query()
vector:
number[]
Query vector
topK?:
number
Number of results to return
filter?:
Record<string, any>
Metadata filters
minScore?:
number
Minimum similarity score threshold
describeIndex()
indexName:
string
Name of the index to describe
Returns:
interface IndexStats {
dimension: number;
count: number;
metric: "cosine" | "euclidean" | "dotproduct";
}
deleteIndex()
indexName:
string
Name of the index to delete
disconnect()
Closes the database connection pool. Should be called when done using the store.
Response Types
Query results are returned in this format:
interface QueryResult {
id: string;
score: number;
metadata: Record<string, any>;
}
Error Handling
The store throws typed errors that can be caught:
try {
await store.query(queryVector);
} catch (error) {
if (error instanceof VectorStoreError) {
console.log(error.code); // 'connection_failed' | 'invalid_dimension' | etc
console.log(error.details); // Additional error context
}
}