Upsert Embeddings
After generating embeddings, you need to store them in a database that supports vector similarity search. This example shows how to store embeddings in various vector databases for later retrieval.
- PgVector
- Pinecone
- Qdrant
- Chroma
- Astra DB
- LibSQL
- Upstash
- Cloudflare
- MongoDB
- OpenSearch
- Couchbase
- LanceDB
The PgVector class provides methods to create indexes and insert embeddings into PostgreSQL with the pgvector extension.
import { openai } from "@ai-sdk/openai";
import { PgVector } from "@mastra/pg";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding("text-embedding-3-small"),
});
const pgVector = new PgVector({ connectionString: process.env.POSTGRES_CONNECTION_STRING! });
await pgVector.createIndex({
indexName: "test_index",
dimension: 1536,
});
await pgVector.upsert({
indexName: "test_index",
vectors: embeddings,
metadata: chunks?.map((chunk: any) => ({ text: chunk.text })),
});
View source on GitHub
The PineconeVector class provides methods to create indexes and insert embeddings into Pinecone, a managed vector database service.
import { openai } from '@ai-sdk/openai';
import { PineconeVector } from '@mastra/pinecone';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const pinecone = new PineconeVector({
apiKey: process.env.PINECONE_API_KEY!,
});
await pinecone.createIndex({
indexName: 'testindex',
dimension: 1536,
});
await pinecone.upsert({
indexName: 'testindex',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
View source on GitHub
The QdrantVector class provides methods to create collections and insert embeddings into Qdrant, a high-performance vector database.
import { openai } from '@ai-sdk/openai';
import { QdrantVector } from '@mastra/qdrant';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
maxRetries: 3,
});
const qdrant = new QdrantVector({
url: process.env.QDRANT_URL,
apiKey: process.env.QDRANT_API_KEY,
});
await qdrant.createIndex({
indexName: 'test_collection',
dimension: 1536,
});
await qdrant.upsert({
indexName: 'test_collection',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
The ChromaVector class provides methods to create collections and insert embeddings into Chroma, an open-source embedding database.
import { openai } from '@ai-sdk/openai';
import { ChromaVector } from '@mastra/chroma';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
// Running Chroma locally
const store = new ChromaVector();
// Running on Chroma Cloud
const store = new ChromaVector({
apiKey: process.env.CHROMA_API_KEY,
tenant: process.env.CHROMA_TENANT,
database: process.env.CHROMA_DATABASE
});
await store.createIndex({
indexName: 'test_collection',
dimension: 1536,
});
await chroma.upsert({
indexName: 'test_collection',
vectors: embeddings,
metadata: chunks.map(chunk => ({ text: chunk.text })),
documents: chunks.map(chunk => chunk.text),
});
View source on GitHub
The AstraVector class provides methods to create collections and insert embeddings into DataStax Astra DB, a cloud-native vector database.
import { openai } from '@ai-sdk/openai';
import { AstraVector } from '@mastra/astra';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
model: openai.embedding('text-embedding-3-small'),
values: chunks.map(chunk => chunk.text),
});
const astra = new AstraVector({
token: process.env.ASTRA_DB_TOKEN,
endpoint: process.env.ASTRA_DB_ENDPOINT,
keyspace: process.env.ASTRA_DB_KEYSPACE,
});
await astra.createIndex({
indexName: 'test_collection',
dimension: 1536,
});
await astra.upsert({
indexName: 'test_collection',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
The LibSQLVector class provides methods to create collections and insert embeddings into LibSQL, a fork of SQLite with vector extensions.
import { openai } from "@ai-sdk/openai";
import { LibSQLVector } from "@mastra/core/vector/libsql";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map((chunk) => chunk.text),
model: openai.embedding("text-embedding-3-small"),
});
const libsql = new LibSQLVector({
connectionUrl: process.env.DATABASE_URL,
authToken: process.env.DATABASE_AUTH_TOKEN, // Optional: for Turso cloud databases
});
await libsql.createIndex({
indexName: "test_collection",
dimension: 1536,
});
await libsql.upsert({
indexName: "test_collection",
vectors: embeddings,
metadata: chunks?.map((chunk) => ({ text: chunk.text })),
});
View source on GitHub
The UpstashVector class provides methods to create collections and insert embeddings into Upstash Vector, a serverless vector database.
import { openai } from '@ai-sdk/openai';
import { UpstashVector } from '@mastra/upstash';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const upstash = new UpstashVector({
url: process.env.UPSTASH_URL,
token: process.env.UPSTASH_TOKEN,
});
// There is no store.createIndex call here, Upstash creates indexes (known as namespaces in Upstash) automatically
// when you upsert if that namespace does not exist yet.
await upstash.upsert({
indexName: 'test_collection', // the namespace name in Upstash
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
The CloudflareVector class provides methods to create collections and insert embeddings into Cloudflare Vectorize, a serverless vector database service.
import { openai } from '@ai-sdk/openai';
import { CloudflareVector } from '@mastra/vectorize';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const vectorize = new CloudflareVector({
accountId: process.env.CF_ACCOUNT_ID,
apiToken: process.env.CF_API_TOKEN,
});
await vectorize.createIndex({
indexName: 'test_collection',
dimension: 1536,
});
await vectorize.upsert({
indexName: 'test_collection',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
The MongoDBVector class provides methods to create indexes and insert embeddings into MongoDB with Atlas Search.
import { openai } from "@ai-sdk/openai";
import { MongoDBVector } from "@mastra/mongodb";
import { MDocument } from "@mastra/rag";
import { embedMany } from "ai";
const doc = MDocument.fromText("Your text content...");
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding("text-embedding-3-small"),
});
const vectorDB = new MongoDBVector({
uri: process.env.MONGODB_URI!,
dbName: process.env.MONGODB_DB_NAME!,
});
await vectorDB.createIndex({
indexName: "test_index",
dimension: 1536,
});
await vectorDB.upsert({
indexName: "test_index",
vectors: embeddings,
metadata: chunks?.map((chunk: any) => ({ text: chunk.text })),
});
The OpenSearchVector class provides methods to create indexes and insert embeddings into OpenSearch, a distributed search engine with vector search capabilities.
import { openai } from '@ai-sdk/openai';
import { OpenSearchVector } from '@mastra/opensearch';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const vectorDB = new OpenSearchVector({
uri: process.env.OPENSEARCH_URI!,
});
await vectorDB.createIndex({
indexName: 'test_index',
dimension: 1536,
});
await vectorDB.upsert({
indexName: 'test_index',
vectors: embeddings,
metadata: chunks?.map((chunk: any) => ({ text: chunk.text })),
});
The CouchbaseVector class provides methods to create indexes and insert embeddings into Couchbase, a distributed NoSQL database with vector search capabilities.
import { openai } from '@ai-sdk/openai';
import { CouchbaseVector } from '@mastra/couchbase';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const couchbase = new CouchbaseVector({
connectionString: process.env.COUCHBASE_CONNECTION_STRING,
username: process.env.COUCHBASE_USERNAME,
password: process.env.COUCHBASE_PASSWORD,
bucketName: process.env.COUCHBASE_BUCKET,
scopeName: process.env.COUCHBASE_SCOPE,
collectionName: process.env.COUCHBASE_COLLECTION,
});
await couchbase.createIndex({
indexName: 'test_collection',
dimension: 1536,
});
await couchbase.upsert({
indexName: 'test_collection',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});
The LanceVectorStore class provides methods to create tables, indexes and insert embeddings into LanceDB, an embedded vector database built on the Lance columnar format.
import { openai } from '@ai-sdk/openai';
import { LanceVectorStore } from '@mastra/lance';
import { MDocument } from '@mastra/rag';
import { embedMany } from 'ai';
const doc = MDocument.fromText('Your text content...');
const chunks = await doc.chunk();
const { embeddings } = await embedMany({
values: chunks.map(chunk => chunk.text),
model: openai.embedding('text-embedding-3-small'),
});
const lance = await LanceVectorStore.create('/path/to/db');
// In LanceDB you need to create a table first
await lance.createIndex({
tableName: 'myVectors',
indexName: 'vector',
dimension: 1536,
});
await lance.upsert({
tableName: 'myVectors',
vectors: embeddings,
metadata: chunks?.map(chunk => ({ text: chunk.text })),
});